Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues.
View Article and Find Full Text PDFThis study presents a novel approach for mapping global chromatin interactions using S1 nuclease, a sequence-agnostic enzyme. We develop and outline a protocol that leverages S1 nuclease's ability to effectively introduce breaks into both open and closed chromatin regions, allowing for comprehensive profiling of chromatin properties. Our S1 Hi-C method enables the preparation of high-quality Hi-C libraries, marking a significant advancement over previously established DNase I Hi-C protocols.
View Article and Find Full Text PDFAmplified sequences constitute a large part of mammalian genomes. A chromosome 1 containing 2 large (up to 50 Mb) homogeneously staining regions (HSRs) separated by a small inverted euchromatic region is present in many natural populations of the house mouse (Mus musculus musculus). The HSRs are composed of a long-range repeat cluster, Sp100-rs, with a repeat length of 100 kb.
View Article and Find Full Text PDF