Many wastewater treatment plants are dependent on the utilization of microorganisms in biofilms. Our knowledge about the establishment of these biofilms is limited, particular with respect to biofilms involved in enhanced biological phosphorus removal (EBPR). These biofilms rely on polyphosphate-accumulating organisms (PAOs), requiring alternating oxic and anaerobic conditions for phosphorous uptake.
View Article and Find Full Text PDFThe spatial distribution of microorganisms represents a critical issue in understanding biofilm function. The aim of the current work was to develop a method for biofilm fractionation, facilitating the analysis of individual spatial biofilm layers using metagenomic approaches. Phosphorus accumulating biofilm applied in an enhanced biological phosphorus removal wastewater treatment plant, were fractionated, and analyzed.
View Article and Find Full Text PDFPhosphorus is both a major environmental pollutant and a limiting resource. Although enhanced biological phosphorus removal (EBPR) is used worldwide for phosphorus removal, the standard activated sludge-based EBPR process shows limitations with stability and efficiency. Recently, a new EBPR moving bed biofilm reactor (MBBR) process has been developed at HIAS (Hamar, Norway), enabling a phosphorus removal stability above 90% during a whole year cycle.
View Article and Find Full Text PDF