Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility.
View Article and Find Full Text PDFThe molecular orientation and microstructure of films of the high-mobility semiconducting polymer poly(N,N-bis-2-octyldodecylnaphthalene-1,4,5,8-bis-dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) (P(NDI2OD-T2)) are probed using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. In particular a novel approach is used whereby the bulk molecular orientation and surface molecular orientation are simultaneously measured on the same sample using NEXAFS spectroscopy in an angle-resolved transmission experiment. Furthermore, the acquisition of bulk-sensitive NEXAFS data enables a direct comparison of the information provided by GIWAXS and NEXAFS.
View Article and Find Full Text PDFWe utilize near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning transmission X-ray microscopy (STXM) to study the microstructure and domain structure of polycrystalline films of the semiconducting polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Total electron yield NEXAFS spectroscopy is used to examine the surface structure of the first 1-2 molecular layers, while bulk-sensitive STXM is used to produce maps of domain orientation and order sampled through the entire film thickness. We study different phases of PBTTT including as-cast, terraced and nanoribbon morphologies produced via spin-coating as well as aligned films of as-cast and nanoribbon morphologies produced by zone-casting.
View Article and Find Full Text PDFWe report a study of the electronic properties of the heterojunction between regioregular poly(3-hexylthiophene) (rrP3HT) and single-walled carbon nanotubes (SWNTs). Comparison of the spectroscopic data of nanotube dispersions in a range of polymers indicates significant changes in the nature of the observed SWNT excitons only in combination with rrP3HT. A detailed analysis concludes that a type II heterojunction between rrP3HT and small diameter s-SWNTs is formed, making these particular nanohybrids a promising material for organic photovoltaics.
View Article and Find Full Text PDF