Publications by authors named "Torben Peitersen"

Dynamic nuclear polarization of (13)C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.

View Article and Find Full Text PDF

Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion.

View Article and Find Full Text PDF

Background: Dysfunction or pharmacologic inhibition of repolarizing cardiac ionic currents can lead to fatal arrhythmias. The hERG potassium channel underlies the repolarizing current I(Kr), and mutations therein can produce both long and short QT syndromes (LQT2 and SQT1). We previously reported on the diphenylurea compound NS1643, which acts on hERG channels in two distinct ways: by increasing overall conductance and by shifting the inactivation curve in the depolarized direction.

View Article and Find Full Text PDF

The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6.

View Article and Find Full Text PDF