A synthetic route to prepare metal-semiconductor hybrid nanoparticles is presented, along with the possibility to tune the ratio of primary to secondary nucleation and the morphology of the semiconductor material grown on the metal nanoparticle seeds. Gold and cobalt-platinum nanoparticles are employed as metal seeds, on which CdS or CdSe is grown. Using transmission electron microscopy, absorption spectroscopy (UV-vis), and powder X-ray diffraction as characterization techniques, a significant influence of chloride ions on the type of nucleation (that is, secondary or primary nucleation) as well as on the shape of the resulting heterostructures is observed.
View Article and Find Full Text PDFLocalized surface plasmon resonances (LSPRs) of degenerately doped copper chalcogenide nanoparticles (NPs) (Cu2-xSe berzelianite and Cu1.1S covellite) have been modified applying different methods. The comparison of the cation exchange (Cu2-xSe) and intercalation (Cu1.
View Article and Find Full Text PDFIn this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment.
View Article and Find Full Text PDF