Three-dimensional (3D) and two-dimensional (2D) perovskite hybrid systems, known for their exceptional optoelectronic properties and stability, are revolutionizing optoelectronic materials research. However, fundamental physics of the 3D/2D interfaces and their dynamics remain poorly understood. We use fluorescence microspectroscopy to study the photoluminescence (PL) properties of 3D/2D nano-heterostructures of CsPbBr/PEAPbBr formed by postgrowth self-assembly.
View Article and Find Full Text PDFPhotoluminescence blinking in individual semiconducting and perovskite quantum dots reflects reduced emission quantum yield and represents an obstacle towards quantum dot applications. One of the origins of blinking is the presence of surface structural defects that can function as charge traps. To reduce the defects the surface can be modified by, , covering with ligands that are more strongly bound to the surface.
View Article and Find Full Text PDF