Publications by authors named "Tor-Christian Aase Johannessen"

Introduction: The use of proton therapy increases globally despite a lack of randomised controlled trials demonstrating its efficacy and safety. Proton therapy enables sparing of non-neoplastic tissue from radiation. This is principally beneficial and holds promise of reduced long-term side effects.

View Article and Find Full Text PDF

Glioblastoma is the most common form of primary brain cancer in adults, and the disease has a serious prognosis. Although great progress has been made in molecular characteristics, no major breakthroughs in treatment have been achieved for many years. In this article we present a clinical review of current diagnostics and treatment, as well as the challenges and opportunities inherent in developing improved and more personalised treatment.

View Article and Find Full Text PDF

An ageing population as well as improved diagnostics, monitoring and treatment mean that an increasing incidence of brain metastases can be expected. Patients with brain metastases were previously regarded as a homogenous group with a very poor prognosis. However, the current picture is more complex.

View Article and Find Full Text PDF

PKM2 is a phosphotyrosine-binding glycolytic enzyme upregulated in many cancers, including glioma, and contributes to tumor growth by regulating cell cycle progression. We noted, however, that in multiple glioma cell lines, PKM2 knock-down resulted in an accumulation of cells in G2-M phase. Moreover, PKM2 knock-down decreased Cdk1 activity while introducing a constitutively active Cdk1 reversed the effects of PKM2 knock-down on cell cycle progression.

View Article and Find Full Text PDF

The glycolytic enzyme PGAM1 is overexpressed in gliomas where it efficiently facilitates the repair of DNA damage. Mechanistically, PGAM1 prevents inactivation of the ataxia-telangiectasia mutated (ATM) signaling pathway by sequestering the wild-type p53-induced phosphatase 1 (WIP1) in the cytoplasm. Genetic inhibition of PGAM1 expression subsequently sensitizes glioma cells against irradiation and chemotherapy-induced DNA damage.

View Article and Find Full Text PDF

The metabolic enzyme phosphoglycerate mutase 1 (PGAM1) is overexpressed in several types of cancer, suggesting an additional function beyond its established role in the glycolytic pathway. We here report that PGAM1 is overexpressed in gliomas where it increases the efficiency of the DNA damage response (DDR) pathway by cytoplasmic binding of WIP1 phosphatase, thereby preventing WIP1 nuclear translocation and subsequent dephosphorylation of the ATM signaling pathway. Silencing of PGAM1 expression in glioma cells consequently decreases formation of γ-H2AX foci, increases apoptosis, and decreases clonogenicity following irradiation (IR) and temozolomide (TMZ) treatment.

View Article and Find Full Text PDF

Unlabelled: Missense mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. Although mutant IDH1 expression is thought to drive the gliomagenesis process, the extent to which it remains a viable therapeutic target remains unknown.

View Article and Find Full Text PDF

Introduction: Glioblastoma multiforme (GBM; World Health Organization astrocytoma grade IV) is the most frequent and most malignant primary brain tumor in adults. Despite multimodal therapy, all such tumors practically recur during the course of therapy, causing a median survival of only 14.6 months in patients with newly diagnosed GBM.

View Article and Find Full Text PDF

Introduction: Tumor-associated angiogenesis is one of the essential hallmarks underlying cancer development and metastasis. Anti-angiogenic agents accordingly aim to restrain cancer progression by blocking the formation of new vessels, improving the delivery of chemotherapeutic agents to the tumor site and reducing the shedding of metastatic cells into the circulation. This review article addresses some key issues in the use of angiogenesis inhibitors in cancer.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM; WHO astrocytoma grade IV) is considered incurable owing to its inherently profound resistance towards current standards of therapy. Considerable effort is being devoted to identifying the molecular basis of temozolomide resistance in GBMs and exploring novel therapeutic regimens that may improve overall survival. Several independent DNA repair mechanisms that normally safeguard genome integrity can facilitate drug resistance and cancer cell survival by removing chemotherapy-induced DNA adducts.

View Article and Find Full Text PDF

Glioblastoma is the most malignant and frequent primary brain tumour in adults. Current treatment remains insufficient as these tumours display a diffuse infiltrative growth pattern and tend to recur despite extensive debulking surgery followed by radio- and chemotherapy. The alkylating agents carmustine (1,3-bis-(2-chloroethyl)-1-nitrosourea, or BCNU) and temozolomide (TMZ) are the drugs of choice for adjuvant glioma chemotherapy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionag3aprcjmjpvjngk0ff5chp06plmi2sl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once