Publications by authors named "Tor Vestad"

Two-photon absorption fluorescence is employed within a microfluidic device to create a three-dimensional chemical concentration map for mixing uniformity characterization. This multiphoton technique images fluorescence intensity directly and provides a simple, rapid, and readily employed route to composition characterization within microfluidic systems.

View Article and Find Full Text PDF

Effective methods for manipulating, isolating and sorting cells and particles are essential for the development of microfluidic-based life science research and diagnostic platforms. We demonstrate an integrated optical platform for cell and particle sorting in microfluidic structures. Fluorescent-dyed particles are excited using an integrated optical waveguide network within micro-channels.

View Article and Find Full Text PDF

Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy.

View Article and Find Full Text PDF

We demonstrate a new technique for trapping, sorting, and manipulating cells and micrometer-sized particles within microfluidic systems, using a diode laser bar. This approach overcomes the scaling limitations of conventional scanned laser traps, while avoiding the computational and optical complexity inherent to holographic optical trapping schemes. The diode laser bar enables us to control a large trapping zone, 1 microm by 100 microm, without the necessity of scanning or altering the phase of the beam.

View Article and Find Full Text PDF

A novel dosimetry-based technique using EPR spectroscopy to determine X-ray beam quality is proposed. The radiation-sensitive material is made of a mixture of two polycrystalline substances with different X-ray absorption properties. The composite samples, consisting of polycrystalline lithium formate monohydrate and calcium formate, were prepared as pellets, X-irradiated, and analyzed with EPR spectroscopy.

View Article and Find Full Text PDF

As a part of a program to develop an electron paramagnetic resonance (EPR) dosimeter suited for clinical use (doses in the cGy range), polycrystalline samples of lithium formate monohydrate (HCO2Li.H2O), magnesium formate dihydrate (C2H2O4Mg.2H2O), and calcium formate (C2H2O4Ca) have been examined.

View Article and Find Full Text PDF

A fragment of the amyloid beta protein, betaA(25-35), was investigated for its effect on production of reactive oxygen species (ROS) in human neutrophil granulocytes. The formation and identification of ROS were examined by using a 2',7'-dichlorofluorescin (DCF) fluorescence assay, a luminol chemiluminescence assay, electron paramagnetic resonance (EPR) spectroscopy with DEPMPO as a spin trap, and hydroxylation of 4-hydroxybenzoate (4-HBA). The DCF assay showed that betaA(25-35) stimulated formation of ROS in concentration and time dependent manner.

View Article and Find Full Text PDF