Publications by authors named "Tor O Strandberg"

Age-related white matter hyperintensities are a common feature and are known to be negatively associated with structural integrity, functional connectivity, and cognitive performance. However, this has yet to be fully understood mechanistically. We analyzed multiple MRI modalities acquired in 465 non-demented individuals from the Swedish BioFINDER study including 334 cognitively normal and 131 participants with mild cognitive impairment.

View Article and Find Full Text PDF

The abnormal accumulation of amyloid-β and tau targets specific spatial networks in Alzheimer's disease. However, the relationship between these networks across different disease stages and their association with brain connectivity has not been explored. In this study, we applied a joint independent component analysis to F- Flutemetamol (amyloid-β) and F-Flortaucipir (tau) PET images to identify amyloid-β and tau networks across different stages of Alzheimer's disease.

View Article and Find Full Text PDF

Alterations in cognitive performance have been noted in nondemented subjects with elevated accumulation of amyloid-β (Aβ) fibrils. However, it is not yet understood whether brain function is already influenced by Aβ deposition during the very earliest stages of the disease. We therefore investigated associations between [18F]Flutemetamol PET, resting-state functional connectivity, gray and white matter structure and cognitive performance in 133 cognitively normal elderly that exhibited normal global Aβ PET levels.

View Article and Find Full Text PDF

To investigate core resting state networks in SLE patients with and without neuropsychiatric symptoms by examining functional connectivity changes correlating with results of cognitive testing. Structural MRI and resting state-fMRI (rs-fMRI) were performed in 61 female SLE patients (mean age: 36.8 years, range 18.

View Article and Find Full Text PDF

To investigate resting-state functional connectivity of lupus patients and associated subgroups according to the ACR NPSLE case definitions (ACR ad hoc). In addition, we investigated whether or not the observed alterations correlated with disease duration, the systemic lupus erythematosus (SLE)-Disease Activity Index-2000 (SLEDAI-2k), and Systemic Lupus International Collaborating Clinical/ACR organ damage index (SDI)-scores. Anatomical 3T magnetic resonance imaging (MRI) and resting-state functional MRI were performed in 61 female lupus patients (mean age = 37.

View Article and Find Full Text PDF

There is increasing evidence showing that the accumulation of the amyloid-β (Aβ) peptide into extracellular plaques is a central event in Alzheimer's disease (AD). These abnormalities can be detected as lowered levels of Aβ42 in the cerebrospinal fluid (CSF) and are followed by increased amyloid burden on positron emission tomography (PET) several years before the onset of dementia. The aim of this study was to assess amyloid network topology in nondemented individuals with early stage Aβ accumulation, defined as abnormal CSF Aβ42 levels and normal Florbetapir PET (CSF+/PET-), and more advanced Aβ accumulation, defined as both abnormal CSF Aβ42 and Florbetapir PET (CSF+/PET+).

View Article and Find Full Text PDF

Alzheimer's disease has a long preclinical phase during which amyloid pathology and neurodegeneration accumulate in the brain without producing overt cognitive deficits. It is currently unclear whether these early disease stages are associated with a progressive disruption in the communication between brain regions that subsequently leads to cognitive decline and dementia. In this study we assessed the organization of structural networks in cognitively normal (CN) individuals harboring amyloid pathology (A+N-), neurodegeneration (A-N+), or both (A+N+) from the prospective and longitudinal Swedish BioFINDER study.

View Article and Find Full Text PDF

Neuropathological studies have shown that the typical neurofibrillary pathology of hyperphosphorylated tau protein in Alzheimer's disease (AD) preferentially affects specific brain regions whereas others remain relatively spared. It has been suggested that the distinct regional distribution profile of tau pathology in AD may be a consequence of the intrinsic network structure of the human brain. The spatially distributed brain regions that are most affected by the spread of tau pathology may hence reflect an interconnected neuronal system.

View Article and Find Full Text PDF

Recent advances in nanoscience have raised interest in the minimum bit size required for classical information storage. This bit size is determined by the necessity for bistability with suppressed quantum tunnelling and energy barriers that exceed ambient temperatures. In the case of magnetic information storage, much attention has centred on molecular magnets with bits consisting of about 100 atoms, magnetic uniaxial anisotropy energy barriers of about 50 K and very slow relaxation at low temperatures.

View Article and Find Full Text PDF