Publications by authors named "Tor Endestad"

Anticipating events and focusing attention accordingly are crucial for navigating our dynamic environment. Rhythmic patterns of sensory input offer valuable cues for temporal expectations and facilitate perceptual processing. Rhythm-based temporal expectations may rely on oscillatory entrainment, where neural activity and perceptual sensitivity synchronize with periodic stimuli.

View Article and Find Full Text PDF

Current evidence suggests moderate heritability of music phenotypes, such as music listening and achievement. However, other fundamental traits underlying people's interest in music and its relevance for their lives have been largely neglected, and little is known about the genetic and environmental etiology of what we refer to as musical sensibility-the tendency to be emotionally and aesthetically engaged by music. This study investigated the latent structure, as well as the genetic and environmental factors influencing individual variability in multiple domains of musical sensibility, and the etiological architecture of the relationship between the dimensions.

View Article and Find Full Text PDF

Objective: The goal of this study was to explore the development and implementation of a protocol for real-time fMRI neurofeedback (rtfMRI-nf) and to assess the potential for enhancing the selective brain activation using stimuli from Virtual Reality (VR). In this study we focused on two specific brain regions, supplementary motor area (SMA) and right inferior frontal gyrus (rIFG). Publications by other study groups have suggested impaired function in these specific brain regions in patients with the diagnoses Attention Deficit Hyperactivity Disorder (ADHD) and Tourette's Syndrome (TS).

View Article and Find Full Text PDF

Attention is not constant but rather fluctuates over time and these attentional fluctuations may prioritize the processing of certain events over others. In music listening, the pleasurable urge to move to music (termed 'groove' by music psychologists) offers a particularly convenient case study of oscillatory attention because it engenders synchronous and oscillatory movements which also vary predictably with stimulus complexity. In this study, we simultaneously recorded pupillometry and scalp electroencephalography (EEG) from participants while they listened to drumbeats of varying complexity that they rated in terms of groove afterwards.

View Article and Find Full Text PDF

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.

View Article and Find Full Text PDF

Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component.

View Article and Find Full Text PDF

Background: Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration errors when fusing post-implantation CT and pre-implantation MR images.

View Article and Find Full Text PDF
Article Synopsis
  • Recent models view spatial attention as a "blinking spotlight" that samples visual information over time, leading to fluctuations in behavior even when attention seems steady.
  • New research points to rhythmic activity in the frontoparietal network as the basis for this rhythmic attention, though causal support was previously lacking.
  • A study using patients with frontoparietal lesions showed that these lesions caused specific periodic attention deficits, demonstrating that neural oscillations have direct effects on attention-guided perceptual sensitivity.
View Article and Find Full Text PDF

Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision.

View Article and Find Full Text PDF

The human prefrontal cortex (PFC) constitutes the structural basis underlying flexible cognitive control, where mixed-selective neural populations encode multiple task features to guide subsequent behavior. The mechanisms by which the brain simultaneously encodes multiple task-relevant variables while minimizing interference from task-irrelevant features remain unknown. Leveraging intracranial recordings from the human PFC, we first demonstrate that competition between coexisting representations of past and present task variables incurs a behavioral switch cost.

View Article and Find Full Text PDF

Information theory is a viable candidate to advance our understanding of how the brain processes information generated in the internal or external environment. With its universal applicability, information theory enables the analysis of complex data sets, is free of requirements about the data structure, and can help infer the underlying brain mechanisms. Information-theoretical metrics such as Entropy or Mutual Information have been highly beneficial for analyzing neurophysiological recordings.

View Article and Find Full Text PDF

Precise electrode localization is important for maximizing the utility of intracranial EEG data. Electrodes are typically localized from post-implantation CT artifacts, but algorithms can fail due to low signal-to-noise ratio, unrelated artifacts, or high-density electrode arrays. Minimizing these errors usually requires time-consuming visual localization and can still result in inaccurate localizations.

View Article and Find Full Text PDF

The ability to perceive the beat in music is crucial for both music listeners and players with expert musicians being notably skilled at noticing fine deviations in the beat. However, it is unclear whether this beat perception ability is enhanced in trained musicians who continue to practice relative to musicians who no longer play. Thus, we investigated this by comparing active musicians', inactive musicians', and nonmusicians' beat alignment ability scores on the Computerized Adaptive Beat Alignment Test (CA-BAT).

View Article and Find Full Text PDF

Introduction: Intracranial electrodes are implanted in patients with drug-resistant epilepsy as part of their pre-surgical evaluation. This allows the investigation of normal and pathological brain functions with excellent spatial and temporal resolution. The spatial resolution relies on methods that precisely localize the implanted electrodes in the cerebral cortex, which is critical for drawing valid inferences about the anatomical localization of brain function.

View Article and Find Full Text PDF

Brain activity differs vastly between sleep, cognitive tasks, and action. Information theory is an appropriate concept to analytically quantify these brain states. Based on neurophysiological recordings, this concept can handle complex data sets, is free of any requirements about the data structure, and can infer the present underlying brain mechanisms.

View Article and Find Full Text PDF

Cognitive rehabilitation is useful for many after traumatic brain injury (TBI), but we lack critical knowledge about which patients benefit the most from different approaches. Advanced neuroimaging techniques have provided important insight into brain pathology and systems plasticity after TBI, and have potential to inform new practices in cognitive rehabilitation. In this study, we aimed to identify candidate structural brain measures with relevance for rehabilitation of cognitive control (executive) function after TBI.

View Article and Find Full Text PDF

Groove, understood as an enjoyable compulsion to move to musical rhythms, typically varies along an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups).

View Article and Find Full Text PDF

It is largely unknown how attention adapts to the timing of acoustic stimuli. To address this, we investigated how hemispheric lateralization of alpha (7-13 Hz) and beta (14-24 Hz) oscillations, reflecting voluntary allocation of auditory spatial attention, is influenced by tempo and predictability of sounds. We recorded electroencephalography while healthy adults listened to rhythmic sound streams with different tempos that were presented dichotically to separate ears, thus permitting manipulation of spatial-temporal attention.

View Article and Find Full Text PDF

How do we think about time? Converging lesion and neuroimaging evidence indicates that orbitofrontal cortex (OFC) supports the encoding and retrieval of temporal context in long-term memory, which may contribute to confabulation in individuals with OFC damage. Here, we reveal that OFC damage diminishes working memory for temporal order, that is, the ability to disentangle the relative recency of events as they unfold. OFC lesions reduced working memory for temporal order but not spatial position, and individual deficits were commensurate with lesion size.

View Article and Find Full Text PDF

Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation.

View Article and Find Full Text PDF

Introduction: Functional networks develop throughout adolescence when anorexia nervosa (AN) normally debuts. In AN, cerebral structural alterations are found in most brain regions and may be related to the observed functional brain changes. Few studies have investigated the functional networks of the brain in adolescent AN patients.

View Article and Find Full Text PDF

Damage to the ventromedial PFC (VMPFC) can cause maladaptive social behavior, but the cognitive processes underlying these behavioral changes are still uncertain. Here, we tested whether patients with acquired VMPFC lesions show altered approach-avoidance tendencies to emotional facial expressions. Thirteen patients with focal VMPFC lesions and 31 age- and gender-matched healthy controls performed an implicit approach-avoidance task in which they either pushed or pulled a joystick depending on stimulus color.

View Article and Find Full Text PDF

Visual search is a fundamental human behavior, providing a gateway to understanding other sensory domains as well as the role of search in higher-order cognition. Search has been proposed to include two component processes: inefficient search (Search) and efficient search (Pop-out). According to extant research, these two processes map onto two separable neural systems located in the frontal and parietal association cortices.

View Article and Find Full Text PDF

Anticipation, monitoring, and evaluation of the outcome of one's actions are at the core of proactive control. Individuals with lesions to OFC often demonstrate behaviors that indicate a lack of recognition or concern for the negative effects of their actions. Altered action timing has also been reported in these patients.

View Article and Find Full Text PDF

Objective: Reduction in cerebral volume is often found in underweight patients with anorexia nervosa (AN), but few studies have investigated other morphological measures. Cortical thickness (CTh) and surface area (CSA), often used to produce the measure of cortical volume, are developmentally distinct measures that may be differentially affected in AN, particularly in the developing brain. In the present study, we investigated CTh and CSA both separately and jointly to gain further insight into structural alterations in adolescent AN patients.

View Article and Find Full Text PDF