Publications by authors named "Toperverg B"

M-STAR is a next generation polarized neutron reflectometer with advanced capabilities. A new focusing guide concept is optimized for samples with dimensions down to a millimeter range. A proposed hybrid pulse-skipping chopper will enable experiments at constant geometry at one incident angle in a broad range of wavevector transfer Q up to 0.

View Article and Find Full Text PDF

Specular and off-specular neutron reflectometry have been used in a combined approach to study thin polymer films. Our goal in this work is to illustrate the power of the off-specular scattering technique to probe the properties of the buried interface of immiscible polymer bilayers of deuterated polystyrene and protonated poly(methyl methacrylate) (h-PMMA). The diffuse scattering stemming from these systems is discussed in relation to thermal fluctuations at the polymer/polymer interface, providing a means to extract in-plane correlation lengths from buried interfaces.

View Article and Find Full Text PDF

Traditionally, neutron scattering is an essential method for the analysis of spin structures and spin excitations in bulk materials. Over the last 30 years, polarized neutron scattering in terms of reflectometry has also contributed largely to the analysis of magnetic thin films and magnetic multilayers. More recently it has been shown that polarized neutron reflectivity is, in addition, a suitable tool for the study of thin films laterally patterned with magnetic stripes or islands.

View Article and Find Full Text PDF

We present a detailed analysis of the in-plane magnetic vector configuration in head-to-head/tail-to-tail stripe domain patterns of nominal 5 µm width. The patterns have been created by He-ion bombardment induced magnetic patterning of a CoFe/IrMn exchange bias thin-film system. Quantitative information about the chemical and magnetic structure is obtained from polarized neutron reflectometry (PNR) and off-specular scattering (OSS).

View Article and Find Full Text PDF

We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable boundaries. Our results provide a pathway for the study of dynamics at surfaces and in ultrathin films using inelastic and/or quasielastic neutron scattering methods.

View Article and Find Full Text PDF

Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.

View Article and Find Full Text PDF

The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature.

View Article and Find Full Text PDF

Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture.

View Article and Find Full Text PDF

We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence.

View Article and Find Full Text PDF

We report on the fabrication and characterization of iron oxide nanoparticle thin film superlattices. The formation into different film morphologies is controlled by tuning the particle plus solvent-to-substrate interaction. It turns out that the wetting vs dewetting properties of the solvent before the self-assembly process during solvent evaporation plays a major role in determining the resulting film morphology.

View Article and Find Full Text PDF

A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.

View Article and Find Full Text PDF

Using neutron reflectometry and resonant x-ray techniques we studied the magnetic proximity effect (MPE) in superlattices composed of superconducting YBa2Cu3O7 and ferromagnetic-metallic La0.67Ca0.33MnO3 or ferromagnetic-insulating LaMnO(3+δ).

View Article and Find Full Text PDF

We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles.

View Article and Find Full Text PDF

A detailed investigation of magnetic impurity-mediated interlayer exchange coupling observed in Cu(0.94)Mn(0.06)/Co multilayers using polarized neutron reflectometry and magnetic x-ray techniques is reported.

View Article and Find Full Text PDF

Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37 °C to 25 °C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure.

View Article and Find Full Text PDF

We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm(3) and variable within a wide range of amplitudes and frequencies.

View Article and Find Full Text PDF

Arrangement of chromatin in intact chicken erythrocyte nuclei was investigated by small angle neutron scattering. The scattering spectra have revealed that on the scales between 15 nm and 1.5 microm the interior of the nucleus exhibited properties of a mass fractal.

View Article and Find Full Text PDF

Direct evidence of the nonuniformly canted state of the spin-flop phase induced by a magnetic field applied to Fe/Cr(100) superlattices is obtained by polarized neutron reflectometry. It is unambiguously demonstrated that the magnetization of the alternating Fe layers is twisted through the multilayer stack proving a stable noncollinear configuration. The maximal tilt at the end layers progressively reduces towards the center of the multilayer.

View Article and Find Full Text PDF