We undertook a screen to isolate determinants of drug resistance in fission yeast and identified two genes that, when mutated, result in sensitivity to a range of structurally unrelated compounds, some of them commonly used in the clinic. One gene, rav1, encodes the homologue of a budding yeast protein which regulates the assembly of the vacuolar ATPase. The second gene, lac1, encodes a homologue of genes that are required for ceramide synthesis.
View Article and Find Full Text PDFCellular protection against oxidative damage is relevant to ageing and numerous diseases. We analyzed the diversity of genome-wide gene expression programs and their regulation in response to various types and doses of oxidants in Schizosaccharomyces pombe. A small core gene set, regulated by the AP-1-like factor Pap1p and the two-component regulator Prr1p, was universally induced irrespective of oxidant and dose.
View Article and Find Full Text PDFIn this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S.
View Article and Find Full Text PDFA combination of medetomidine, Telazol, and ketamine hydrochloride was used to immobilize captive Chacoan peccaries (Catagonus wagneri) for translocation within Paraguay during August-October 2002. Animals were darted in enclosed areas of varying size. The average dose used was 32.
View Article and Find Full Text PDFWe explored transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses. DNA microarrays were used to characterize changes in expression profiles of all known and predicted genes in response to five stress conditions: oxidative stress caused by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by temperature increase to 39 degrees C, osmotic stress caused by sorbitol, and DNA damage caused by the alkylating agent methylmethane sulfonate. We define a core environmental stress response (CESR) common to all, or most, stresses.
View Article and Find Full Text PDFThe fission yeast stress-activated Sty1/Spc1 MAPK pathway responds to a similar range of stresses as do the mammalian p38 and SAPK/JNK MAPK pathways. In addition, sty1(-) cells are sterile and exhibit a G(2) cell cycle delay, indicating additional roles of Sty1 in meiosis and cell cycle progression. To identify novel proteins involved in stress responses, a microarray analysis of the Schizosaccharomyces pombe genome was performed to find genes that are up-regulated following exposure to stress in a Sty1-dependent manner.
View Article and Find Full Text PDFWe have identified three genes, gst1(+), gst2(+), and gst3(+), encoding theta-class glutathione S-transferases (GSTs) in Schizosaccharomyces pombe. The gst1(+) and gst2(+) genes encode closely related proteins (79% identical). Our analysis suggests that Gst1, Gst2, and Gst3 all have GST activity with the substrate 1-chloro-2,4-dinitrobenzene and that Gst3 has glutathione peroxidase activity.
View Article and Find Full Text PDFThe signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H(2)O(2) in the fission yeast Schizosaccharomyces pombe. We find that H(2)O(2) activates the Sty1 pathway in a dose-dependent manner via at least two sensing mechanisms.
View Article and Find Full Text PDFCells have evolved complex and efficient strategies for dealing with variable and often-harsh environments. A key aspect of these stress responses is the transcriptional activation of genes encoding defense and repair proteins. In yeast members of the AP-1 family of proteins are required for the transcriptional response to oxidative stress.
View Article and Find Full Text PDFIn the past two years, the completion of the Saccharomyces cerevisiae genome project and molecular analysis of other fungal species has resulted in the identification of a growing number of yeast AP-1 transcription factors. Characterisation of these factors indicates that, like their mammalian counterparts, they activate gene expression in response to a variety of extracellular stimuli. In particular, these factors are required for the response to oxidative stress and for surviving exposure to a variety of cytotoxic agents.
View Article and Find Full Text PDFEukaryotic cells have developed response mechanisms to combat the harmful effects of a variety of stress conditions. In the majority of cases, such responses involve changes in the gene expression pattern of the cell, leading to increased levels and activities of proteins that have stress-protective functions. Over the last few years, considerable progress has been made in understanding how stress-dependent transcriptional changes are brought about, and it transpires that the underlying mechanisms are highly conserved, being similar in organisms ranging from yeast to man.
View Article and Find Full Text PDFThe fission yeast Sty1 stress-activated MAP kinase is crucial for the cellular response to a variety of stress conditions. Accordingly, sty1- cells are defective in their response to nutrient limitation, lose viability in stationary phase, and are hypersensitive to osmotic stress, oxidative stress, and UV treatment. Some of these phenotypes are caused by Sty1-dependent regulation of the Atf1 transcription factor, which controls both meiosis-specific and osmotic stress-responsive genes.
View Article and Find Full Text PDFThe transcription factor Swi4p plays a crucial role in the control of the initiation of the cell cycle in budding yeast. To further understand Swi4p function, we set up a synthetic lethal screen for genes interacting with SWI4. Fourteen conditional mutations which resulted in lethality only in the absence of SWI4 have been isolated.
View Article and Find Full Text PDFDeletion of the bacterial two-component response regulator homologue Skn7 results in sensitivity of yeast to oxidizing agents indicating that Skn7 is involved in the response to this type of stress. Here we demonstrate that following oxidative stress, Skn7 regulates the induction of two genes: TRX2, encoding thioredoxin, and a gene encoding thioredoxin reductase. TRX2 is already known to be induced by oxidative stress dependent on the Yap1 protein, an AP1-like transcription factor responsible for the induction of gene expression in response to various stresses.
View Article and Find Full Text PDFAnnu Rev Microbiol
December 1997
Initiation of DNA replication in yeast appears to operate through a two-step process. The first step occurs at the end of mitosis in the previous cell cycle, where, following the decrease in B cyclin-dependent kinase activity, an extended protein complex called the prereplicative complex (pre-RC) forms over the origin of replication. This complex is dependent on the association of the Cdc6 protein with the Origin Recognition Complex (ORC) and appears concomitantly with the nuclear entry of members of the Mcm family of proteins.
View Article and Find Full Text PDFDeactivation of the B cyclin kinase (Cdc28/Clb) drives the telophase to G1 cell cycle transition. Here we investigate one of the control pathways than contributes to kinase deactivation, involving the cell cycle-regulated production of the cdk inhibition Sic1. We show that the cell cycle timing of SIC1 expression depends on the transcription factor Swi5, and that Swi5-dependent SIC1 expression begins during telophase.
View Article and Find Full Text PDFThe atf1+ gene of Schizosaccharomyces pombe encodes a bZIP transcription factor with strong homology to the mammalian factor ATF-2. ATF-2 is regulated through phosphorylation in mammalian cells by the stress-activated mitogen-activated protein (MAP) kinases SAPK/JNK and p38. We show here that the fission yeast Atf1 factor is also regulated by a stress-activated kinase, Sty1.
View Article and Find Full Text PDFControl of G1 cyclin expression in Saccharomyces cerevisiae is mediated primarily by the transcription factor SBF (Swi4/Swi6). In the absence of Swi4 and Swi6 cell viability is lost, but can be regained by ectopic expression of the G1 cyclin encoding genes, CLN1 or CLN2. Here we demonstrate that the RME1 (regulator of meiosis) gene can also bypass the normally essential requirement for SBF.
View Article and Find Full Text PDFWe present evidence that the HIV-1 Tat protein and the RNA-dependent cellular protein kinase, PKR, interact with each other both in vitro and in vivo. Using GST fusion chromatography, we demonstrate that PKR, interacts directly with the HIV-1 Tat protein. The region in Tat sufficient for binding PKR maps within amino acids 20 to 72.
View Article and Find Full Text PDFThe interferon-induced, double-stranded RNA (dsRNA)-dependent protein kinase, PKR, is an inhibitor of translation and has antiviral, antiproliferative, and antitumor properties. Previously, the dsRNA binding domain had been located within the N-terminal region of PKR and subsequently shown to include two nearly identical domains comprising residues 55-75 and 145-166. We have undertaken both random and site-directed, alanine-scanning mutagenesis in order to investigate the contribution of individual amino acids within these domains to dsRNA binding.
View Article and Find Full Text PDFDNA replication in eukaryotic cells is initiated at sites in the DNA known as origins. Studies in yeast have identified a number of the genes and proteins that may be involved in this process. In this review, we concentrate largely on those genes on proteins that are required for initiation of DNA replication and for which there is some evidence for a role at origins.
View Article and Find Full Text PDFCertain mutations in gyrA and gyrB, the genes encoding the two subunits of DNA gyrase, are known to influence expression of the his operon (K. E. Rudd and R.
View Article and Find Full Text PDFWe have cloned and sequenced a new gene from Escherichia coli which encodes a 64-kDa protein. The inferred amino acid sequence of the protein shows remarkable similarity to eIF4A, a murine translation initiation factor that has an ATP-dependent RNA helicase activity and is a founding member of the D-E-A-D family of proteins (characterized by a conserved Asp-Glu-Ala-Asp motif). Our new gene, called deaD, was cloned as a gene dosage-dependent suppressor of temperature-sensitive mutations in rpsB, the gene encoding ribosomal protein S2.
View Article and Find Full Text PDFIn order to define the molecular requirements for IgM pentamer formation, we have isolated several mutant hybridomas which produce predominantly monomeric IgM. For one such mutant, 102, we synthesized a cDNA clone of its mu-mRNA, and found an in-frame 39-bp deletion, which thus encodes a mu-chain lacking amino acids 550-562, a region spanning the fourth constant domain and the tail of the mu-chain. To prove that this deletion is sufficient to block pentamer formation, we used site-directed mutagenesis to construct a mu-gene lacking these 39 bp, and have shown that the expression of this altered mu-gene results in the production of monomeric IgM.
View Article and Find Full Text PDF