Publications by authors named "Toon Lambrechts"

Implementing a personalised feeding strategy for each individual batch of a bioprocess could significantly reduce the unnecessary costs of overfeeding the cells. This paper uses lactate measurements during the cell culture process as an indication of cell growth to adapt the feeding strategy accordingly. For this purpose, a model predictive control is used to follow this a priori determined reference trajectory of cumulative lactate.

View Article and Find Full Text PDF

Stem cell expansion on 3D porous scaffolds cultured in bioreactor systems has been shown to be beneficial for maintenance of the original cell functionality in tissue engineering strategies (TE). However, the production of extracellular matrix (ECM) makes harvesting the progenitor cell population from 3D scaffolds a challenge. Medium composition plays a role in stimulating cell proliferation over extracellular matrix (ECM) production.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells (hMSCs) have become attractive candidates for advanced medical cell-based therapies. An in vitro expansion step is routinely used to reach the required clinical quantities. However, this is influenced by many variables including donor characteristics, such as age and gender, and culture conditions, such as cell seeding density and available culture surface area.

View Article and Find Full Text PDF

Bioreactors are crucial tools for the manufacturing of living cell-based tissue engineered products. However, to reach the market successfully, higher degrees of automation, as well as a decreased footprint still need to be reached. In this study, the use of a benchtop bioreactor for in vitro perfusion culture of scaffold-based tissue engineering constructs is assessed.

View Article and Find Full Text PDF

Studies on monolayer cultures and whole-animal models for the prediction of the response of native human tissue are associated with limitations. Therefore, more and more laboratories are tending towards multicellular spheroids grown in vitro as a model of native tissues. In addition, they are increasingly used in a wide range of biofabrication methodologies.

View Article and Find Full Text PDF

Background Aims: With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs).

Methods: We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay.

View Article and Find Full Text PDF

Large-scale and cost-effective cell expansion processes are a prerequisite for the clinical and commercial translation of cell-based therapies. A large variety of cell expansion processes are described in literature, utilizing different cell types, culture vessels, and medium formulations. Consequently there are no straightforward means for the comparison or benchmarking of these processes in terms of efficiency, scale, or costs.

View Article and Find Full Text PDF