Publications by authors named "Toon Huysmans"

Introduction: Foot shape assessment is important to characterise the complex shape of a foot, which is in turn essential for accurate design of foot orthoses and footwear, as well as quantification of foot deformities (e.g., hallux valgus).

View Article and Find Full Text PDF

Subjective scales are frequently used in the design process of head-related products to assess pressure discomfort. Nevertheless, some users lack fundamental cognitive and motor abilities (e.g.

View Article and Find Full Text PDF

Preserving features or local shape characteristics of a mesh using conventional non-rigid registration methods is always difficult, as the preservation and deformation are competing with each other. The challenge is to find a balance between these two terms in the process of the registration, especially in presence of artefacts in the mesh. We present a non-rigid Iterative Closest Points (ICP) algorithm which addresses the challenge as a control problem.

View Article and Find Full Text PDF

Pressure sensitivity research on the head, face, and neck is critical to develop ways to reduce discomfort caused by pressure in head-related products. The aim of this paper is to provide information for designers to be able to reduce the pressure discomfort by studying the relation between pressure sensitivity and soft tissue in the head, face and neck. We collected pressure discomfort threshold (PDT) and pressure pain threshold (PPT) from 119 landmarks (unilateral) for 36 Chinese subjects.

View Article and Find Full Text PDF

Non-invasive ventilation (NIV) is increasingly used in the support of acute respiratory failure in critically ill children admitted to the pediatric intensive care unit (PICU). One of the major challenges in pediatric NIV is finding an optimal fitting mask that limits air leakage, in particular for young children and those with specific facial features. Here, we describe the development of a pediatric head-lung model, based on 3D anthropometric data, to simulate pediatric NIV in a 1-year-old child, which can serve as a tool to investigate the effectiveness of NIV masks.

View Article and Find Full Text PDF

Preserving features of a surface as characteristic local shape properties captured e.g. by curvature, during non-rigid registration is always difficult where finding meaningful correspondences, assuring the robustness and the convergence of the algorithm while maintaining the quality of mesh are often challenges due to the high degrees of freedom and the sensitivity to features of the source surface.

View Article and Find Full Text PDF

Current classifications of midshaft clavicle fractures are based on radiography. The aim of the study was to evaluate the fracture pattern of clavicle fractures using 3-dimensional computed tomography (3D CT). A retrospective analysis was performed on CT scans of 65 acute clavicle fractures.

View Article and Find Full Text PDF

Most digital models of the equine distal limb that are available in the community are static and/or subject specific; hence, they have limited applications in veterinary research. In this paper, we present an articulatable model of the entire equine distal limb based on statistical shape modeling. The model describes the inter-subject variability in bone geometry while maintaining proper jointspace distances to support model articulation toward different poses.

View Article and Find Full Text PDF

Quantitative analyses of plantar pressure images typically occur at the group level and under the assumption that individuals within each group display homogeneous pressure patterns. When this assumption does not hold, a personalized analysis technique is required. Yet, existing personalized plantar pressure analysis techniques work at the image level, leading to results that can be unintuitive and difficult to interpret.

View Article and Find Full Text PDF

In this paper, we investigate the heating function of the nasal cavity qualitatively, using a high-quality, large-scale statistical shape model. This model consists of a symmetrical and an asymmetrical part and provides a new and unique way of examining changes in nasal heating function resulting from natural variations in nasal shape (as obtained from 100 clinical CT scans). Data collected from patients suffering from different nasal or sinus-related complaints are included.

View Article and Find Full Text PDF

During a transcatheter aortic valve implantation, an axisymmetric implant is placed in an irregularly shaped aortic root. Implanting an incorrect size can cause complications such as leakage of blood alongside or through the implant. The aim of this study was to construct a method that determines the optimal size of the implant based on the three-dimensional shape of the aortic root.

View Article and Find Full Text PDF

Due to changes in foot morphology and the occurrence of foot deformities and foot pain with ageing, older people frequently wear ill-fitting shoes. This can lead to discomfort and reduced mobility. A review of the literature was performed in Medline, Scopus and Embase with three aims: (a) to evaluate the effects of shoes or shoe elements on the comfort and mobility of older adults, (b) to summarise the evidence-based elements of a safe and comfortable shoe for older adults, and (c) from that, to compile those elements into design recommendations for a safe and comfortable shoe for older adults.

View Article and Find Full Text PDF

Data reduction techniques are commonly applied to dynamic plantar pressure measurements, often prior to the measurement's analysis. In performing these data reductions, information is discarded from the measurement before it can be evaluated, leading to unkonwn consequences. In this study, we aim to provide the first assessment of what impact data reduction techniques have on plantar pressure measurements.

View Article and Find Full Text PDF

For product developers that design near-body products, virtual mannequins that represent realistic body shapes, are valuable tools. With statistical shape modelling, the variability of such body shapes can be described. Shape variation captured by statistical shape models (SSMs) is often polluted by posture variations, leading to less compact models.

View Article and Find Full Text PDF

The human nose is a complex organ that shows large morphological variations and has many important functions. However, the relation between shape and function is not yet fully understood. In this work, we present a high quality statistical shape model of the human nose based on clinical CT data of 46 patients.

View Article and Find Full Text PDF

The nose is a complex and important organ with a multitude of functions. Computational fluid dynamics (CFD) has been shown to be a valuable tool to obtain a better understanding of the functioning of the nose. CFD simulations require a surface geometry, which is constructed from tomographic data.

View Article and Find Full Text PDF

Substantial knowledge of auditory processing within mammalian nervous systems emerged from neurophysiological studies of the mustached bat (Pteronotus parnellii). This highly social and vocal species retrieves precise information about the velocity and range of its targets through echolocation. Such high acoustic processing demands were likely the evolutionary pressures driving the over-development at peripheral (cochlea), metencephalic (cochlear nucleus), mesencephalic (inferior colliculus), diencephalic (medial geniculate body of the thalamus), and telencephalic (auditory cortex) auditory processing levels in this species.

View Article and Find Full Text PDF

Background: Pedobarography produces large sets of plantar pressure samples that are routinely subsampled (e.g. using regions of interest) or aggregated (e.

View Article and Find Full Text PDF

Background: Foot morphology has received increasing attention from both biomechanics researches and footwear manufacturers. Usually, the morphology of the foot is quantified by 2D footprints. However, footprint quantification ignores the foot's vertical dimension and hence, does not allow accurate quantification of complex 3D foot shape.

View Article and Find Full Text PDF

Although EEG experiments over the past decades have shown numerous applications for brain-computer interfacing (BCI), there is a need for user-friendly BCI devices that can be used in real-world situations. 3D anthropometry and statistical shape modeling have been shown to improve the fit of devices such as helmets and respirators, and thus they might also be suitable to design BCI headgear that better fits the size and shape variation of the human head. In this paper, a new design method for BCI devices is proposed and evaluated.

View Article and Find Full Text PDF

Human middle ears show large morphological variations. This could affect our perception of hearing and explain large variation in experimentally obtained transfer functions. Most morphological studies focus on capturing variation by using landmarks on cadaveric temporal bones.

View Article and Find Full Text PDF

This paper presents the evaluation a 3D shape model of the human head. A statistical shape model of the head is created from a set of 100 MRI scans. The ability of the shape model to predict new head shapes is evaluated by considering the prediction error distributions.

View Article and Find Full Text PDF

Even though declines in sensorimotor performance during healthy aging have been documented extensively, its underlying neural mechanisms remain unclear. Here, we explored whether age-related subcortical atrophy plays a role in sensorimotor performance declines, and particularly during bimanual manipulative performance (Purdue Pegboard Test). The thalamus, putamen, caudate and pallidum of 91 participants across the adult lifespan (ages 20-79 years) were automatically segmented.

View Article and Find Full Text PDF

The clavicle has a complex osteologic structure that makes morphological analysis extremely difficult. A three-dimensional study was conducted to examine the anatomical variations and characteristics of the bone. Sixty-eight human cadaver clavicles were dissected, CAT-scanned, and reconstructed.

View Article and Find Full Text PDF

Statistical shape modeling is an established technique and is used for a variety of tasks in medical image processing, such as image segmentation and analysis. A challenging task in the construction of a shape model is establishing a good correspondence across the set of training shapes. Especially for shapes of cylindrical topology, very little work has been done.

View Article and Find Full Text PDF