We are investigating the potential use of short-lived alpha-emitting radionuclides for the treatment of ovarian carcinoma. These radionuclides transfer dense high ionizing linear energy (high LET) over a short path length without dependence upon cellular oxygen. The alpha-emitting radionuclides chosen were lead-212 and bismuth-212 which are readily available.
View Article and Find Full Text PDFOvarian carcinomas of similar histology have variable responses to radiation therapy. It has been suggested that inherent cellular resistance to radiation may in part underlie radiotherapy failure. To determine in vitro radiobiological parameters of papillary serous adenocarcinoma of the ovary, we investigated the cellular responses of 16 early-passage ovarian carcinoma cell lines to radiation.
View Article and Find Full Text PDFalpha-Emitting radionuclides may be an effective alternative treatment against ovarian carcinoma because they have short half-lives and are densely ionizing, with high linear energy transfer to a depth of several cell diameters without requiring cellular oxygenation. One radionuclide that has been generated and tested in our laboratory in vitro and in vivo is lead 212 (212Pb). Intraperitoneal instillation of 212Pb prolonged survival and totally eradicated tumor in 24% of mice inoculated with the extremely virulent Ehrlich ascites-producing tumor.
View Article and Find Full Text PDFClinical studies have suggested a close correlation between cis-diamminedichloroplatinum(II) (cisplatin) and radiation resistance. To determine whether this cross-resistance is due to an inherent cellular resistance to both agents, ten early passage human tumor cell lines were examined for their radiation and cisplatin sensitivity in vitro. Previous studies have suggested that these early passage tumor cell lines retain many of their in vivo characteristics and are therefore good models for tumor cells in vivo.
View Article and Find Full Text PDF