Electrospun polymer/ceramic composites have gained interest for use as scaffolds for bone tissue engineering applications. In this study, we investigated methods to incorporate Platelet Derived Growth Factor-BB (PDGF-BB) in electrospun polycaprolactone (PCL) or PCL prepared with polyethylene oxide (PEO), where both contained varying levels (up to 30 wt %) of ceramic composed of biphasic calcium phosphates, hydroxyapatite (HA)/β-tricalcium phosphate (TCP). Using a model protein, lysozyme, we compared two methods of protein incorporation, adsorption and emulsion electrospinning.
View Article and Find Full Text PDFEmulsion electrospinning has been sought as a method to prepare fibrous materials/scaffolds for growth factor delivery. Emulsion conditions, specifically sonication and the addition of a surfactant, were evaluated to determine their effect on the release and bioactivity of proteins from electrospun scaffolds. Polycaprolactone (PCL) and poly(ethylene oxide) (PEO/PCL) blends were evaluated where PEO, a hydrophilic polymer, was shown to enhance the incorporation of proteins.
View Article and Find Full Text PDFThis study evaluated the osteogenic differentiation of human mesenchymal stem cells (MSCs), on tyrosine-derived polycarbonates copolymerized with poly(ethylene glycol) (PEG) to determine their potential as a scaffold for bone tissue engineering applications. The addition of PEG in the backbone of polycarbonates has been shown to alter mechanical properties, degradation rates, degree of protein adsorption, and subsequent cell adhesion and motility in mature cell phenotypes. Its effect on MSC behavior is unknown.
View Article and Find Full Text PDFThe objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug.
View Article and Find Full Text PDF