Deimatic behaviour is performed by prey when attacked by predators as part of an antipredator strategy. The behaviour is part of a sequence that consists of several defences, for example they can be preceded by camouflage and followed by a hidden putatively aposematic signal that is only revealed when the deimatic behaviour is performed. When displaying their hidden signal, mountain katydids (Acripeza reticulata) hold their wings vertically, exposing striking red and black stripes with blue spots and oozing an alkaloid-rich chemical defence derived from its Senecio diet.
View Article and Find Full Text PDFMany vertebrates gain critical information about danger by eavesdropping on other species' alarm calls [1], providing an excellent context in which to study information flow among species in animal communities [2-4]. A fundamental but unresolved question is how individuals recognize other species' alarm calls. Although individuals respond to heterospecific calls that are acoustically similar to their own, alarms vary greatly among species, and eavesdropping probably also requires learning [1].
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
May 2015
Animals often gather information from other species by eavesdropping on signals intended for others. We review the extent, benefits, mechanisms, and ecological and evolutionary consequences of eavesdropping on other species' alarm calls. Eavesdropping has been shown experimentally in about 70 vertebrate species, and can entail closely or distantly related species.
View Article and Find Full Text PDFCommunication about predators can reveal the effects of both conspecific and heterospecific audiences on signalling strategy, providing insight into signal function and animal cognition. In species that alarm call to their young, parents face a fundamental dilemma: calling can silence noisy offspring and so make them less likely to be overheard, but can also alert predators that young are nearby. Parents could resolve this dilemma by being sensitive to the current vulnerability of offspring, and calling only when young are most at risk.
View Article and Find Full Text PDFBegging by nestling birds has been used to test evolutionary models of signalling but theory has outstripped evidence. Eavesdropping predators potentially impose a cost on begging that ensures signal honesty, yet little experimental evidence exists for such a cost at active nests because the use of artificial nests, long playback bouts and absence of parents may have exaggerated costs. We broadcast short periods (1 h) of either nestling vocalizations or background noise at active white-browed scrubwren, Sericornis frontalis, nests.
View Article and Find Full Text PDF