Publications by authors named "Tony Yeung"

While increased DNA damage is a well-described feature of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), it is unclear whether all lineages and all regions of the marrow are homogeneously affected. In this study, we performed immunohistochemistry on formalin-fixed, paraffin-embedded whole-section bone marrow biopsies using a well-established antibody to detect pH2A.X (phosphorylated histone variant H2A.

View Article and Find Full Text PDF

Background: The L Test of Functional Mobility (L Test) was developed to assess the advanced mobility, which includes both turning and walking ability. This study aimed to evaluate (1) the intra-rater reliability of the L Test in four turning conditions, (2) the correlation with other stroke-specific impairment for community-dwelling older adults with stroke, and (3) the optimal cut-off completion time of the L Test to distinguish the difference of performance between healthy older adults and people with stroke.

Methods: This is a cross-sectional design.

View Article and Find Full Text PDF

The alkylating agent platinum is first-line chemotherapy treatment for high-grade serous carcinomas (HGSC) of tubal-ovarian origin. Platinum compounds cause DNA damage and induce apoptotic cell death in the bulk tumor population. However, subpopulations of tumor cells may exhibit diverging behaviors from the bulk tumor due to an alternate stress response that diverts tumor cells from apoptotic death.

View Article and Find Full Text PDF

A CO-responsive superamphiphile was designed to form switchable O/W microemulsions of rapid switching responses. The linear structured superamphiphile was assembled via electrostatic interactions between anionic oleic acid and cationic Jeffamine D-230 at a mole ratio of 1:1. Addition of the CO-responsive superamphiphile and 1-butanol as a co-surfactant led to the spontaneous formation of stable heptane-in-water microemulsions.

View Article and Find Full Text PDF

Hippo pathway transcriptional coactivators TAZ and YAP and the TGF-β1 (TGFβ) effector Smad3 regulate a common set of genes, can physically interact, and exhibit multilevel cross-talk regulating cell fate-determining and fibrogenic pathways. However, a key aspect of this cross-talk, TGFβ-mediated regulation of TAZ or YAP expression, remains uncharacterized. Here, we show that TGFβ induces robust TAZ but not YAP protein expression in both mesenchymal and epithelial cells.

View Article and Find Full Text PDF

The Na(+)/H(+) exchanger NHE3 plays a central role in intravascular volume and acid-base homeostasis. Ion exchange activity is conferred by its transmembrane domain, while regulation of the rate of transport by a variety of stimuli is dependent on its cytosolic C-terminal region. Liposome- and cell-based assays employing synthetic or recombinant segments of the cytosolic tail demonstrated preferential association with anionic membranes, which was abrogated by perturbations that interfere with electrostatic interactions.

View Article and Find Full Text PDF

Electrostatic interactions with negative lipids contribute to the subcellular localization of polycationic proteins. In situ measurements using cytosolic probes of surface charge indicate that normal mitochondria are not noticeably electronegative. However, during apoptosis mitochondria accrue negative charge and acquire the ability to attract cationic proteins, including K-Ras.

View Article and Find Full Text PDF

Shifts in electrostatic surface charge of membranes have recently been highlighted as a significant factor contributing to protein targeting to the plasma membrane and nascent phagosomes. Intracellular, vacuole-adapted pathogens may also regulate surface charge of their vacuoles to establish a replicative niche. Since Salmonella enterica serovar Typhimurium controls trafficking of the Salmonella-containing vacuole (SCV) and inhibits its fusion with lysosomes, we investigated the contribution of surface charge to this process.

View Article and Find Full Text PDF

During phagocytosis, the phosphoinositide content of the activated membrane decreases sharply, as does the associated surface charge, which attracts polycationic proteins. The cytosolic leaflet of the plasma membrane is enriched in phosphatidylserine (PS); however, a lack of suitable probes has precluded investigation of the fate of this phospholipid during phagocytosis. We used a recently developed fluorescent biosensor to monitor the distribution and dynamics of PS during phagosome formation and maturation.

View Article and Find Full Text PDF

Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes.

View Article and Find Full Text PDF

We investigated the mechanism whereby cell contact injury stimulates the alpha-smooth muscle actin (SMA) promoter, a key process for epithelial-mesenchymal transition (EMT) during organ fibrosis. Contact disruption by low-Ca(2+) medium (LCM) activated Rac, PAK and p38 MAPK, and triggered the nuclear accumulation of myocardin-related transcription factor (MRTF), an inducer of the SMA promoter. Dominant negative (DN) Rac, DN-PAK, DN-p38, or the p38 inhibitor SB203580 suppressed the LCM-induced nuclear accumulation of MRTF and the activation of the SMA promoter.

View Article and Find Full Text PDF

Phagocytosis is an important component of innate and adaptive immunity. The formation of phagosomes and the subsequent maturation that capacitates them for pathogen elimination and antigen presentation are complex processes that involve signal transduction, cytoskeletal reorganization, and membrane remodeling. Lipids are increasingly appreciated to play a crucial role in these events.

View Article and Find Full Text PDF

The surface potential of biological membranes varies according to their lipid composition. We devised genetically encoded probes to assess surface potential in intact cells. These probes revealed marked, localized alterations in the charge of the inner surface of the plasma membrane of macrophages during the course of phagocytosis.

View Article and Find Full Text PDF

Phagocytosis, the engulfment of particles, mediates the elimination of invading pathogens as well as the clearance of apoptotic cells. Ingested particles reside within a vacuole or phagosome, where they are eventually destroyed and digested. The phagosomal lumen acquires microbicidal and digestive properties through interaction with various components of the endocytic pathway, a process known as maturation.

View Article and Find Full Text PDF

Some intracellular pathogens avoid killing within phagosomes--which are specialized microbicidal organelles in cells of the innate immune system--by altering phagosomal maturation or by entering a different subcellular compartment. The fate of the microorganisms is ultimately dictated by the composition of the surrounding environment. The unique problems associated with in situ measurements of intracellular microenvironments within intact cells and the advantages of quantitative fluorescence microscopy have recently been investigated.

View Article and Find Full Text PDF

The morphology and cytoskeletal structure of fibroblasts, endothelial cells, and neutrophils are documented for cells cultured on surfaces with stiffness ranging from 2 to 55,000 Pa that have been laminated with fibronectin or collagen as adhesive ligand. When grown in sparse culture with no cell-cell contacts, fibroblasts and endothelial cells show an abrupt change in spread area that occurs at a stiffness range around 3,000 Pa. No actin stress fibers are seen in fibroblasts on soft surfaces, and the appearance of stress fibers is abrupt and complete at a stiffness range coincident with that at which they spread.

View Article and Find Full Text PDF