Publications by authors named "Tony Walshe"

Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown.

View Article and Find Full Text PDF

Succinate is known to act as an inflammatory signal in classically activated macrophages through stabilization of HIF-1α leading to IL-1β production. Relevant to this, hypoxia is known to drive succinate accumulation and release into the extracellular milieu. The metabolic alterations associated with succinate release during inflammation and under hypoxia are poorly understood.

View Article and Find Full Text PDF

Hyperglycaemia and hypoxia play essential pathophysiological roles in diabetes. We determined whether hyperglycaemia influences endothelial cell growth under hypoxic conditions in vitro. Using a Ruskinn Invivo 400 Hypoxia Workstation, bovine aortic endothelial cells (BAEC) were exposed to high glucose concentrations (25 mM glucose) under normoxic or hypoxic conditions before cell growth (balance of proliferation and apoptosis) was assessed by fluorescence-activated cell sorting (FACS) analysis, proliferating cell nuclear antigen (pCNA), Bcl-x and caspase-3 protein expression and activity.

View Article and Find Full Text PDF

Objective: Vascular endothelial cells (ECs) are continuously exposed to blood flow that contributes to the maintenance of vessel structure and function; however, the effect of hemodynamic forces on transforming growth factor-β (TGF-β) signaling in the endothelium is poorly described. We examined the potential role of TGF-β signaling in mediating the protective effects of shear stress on ECs.

Approach And Results: Human umbilical vein ECs (HUVECs) exposed to shear stress were compared with cells grown under static conditions.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is critical for angiogenesis, but also has pleiotropic effects on several nonvascular cells. Our aim was to investigate the role of VEGF in brown adipose tissue (BAT). We show that VEGF expression increases 2.

View Article and Find Full Text PDF

Purpose: The role of VEGF-A in the normal ciliary body is largely unexplored. The ciliary body is similar in many respects to the choroid plexus of the brain, and we demonstrated previously the importance of VEGF-A in maintenance of choroid plexus vasculature and ependymal cells. Therefore, the role of VEGF-A in ciliary body homeostasis was explored.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) plays a crucial role in developmental and pathological angiogenesis. Expression of VEGF in quiescent adult tissue suggests a potential role in the maintenance of mature blood vessels. We demonstrate, using a Vegf-lacZ reporter mouse model, that VEGF is expressed by arterial but not by venous or capillary endothelial cells (ECs) in vivo.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. In advanced AMD, new vessels from choriocapillaris (CC) invade through the Bruch's membrane (BrM) into the retina, forming choroidal neovascularization (CNV). BrM, an elastic lamina that is located between the retinal pigment epithelium (RPE) and CC, is thought to act as a physical and functional barrier against CNV.

View Article and Find Full Text PDF

Purpose: Despite a lack of active angiogenesis, VEGF is expressed in nearly every adult tissue, and recent evidence suggests that VEGF may serve as a survival factor for both vascular and nonvascular tissues. VEGF blockade is a widely used treatment for neovascular diseases such as wet age-related macular degeneration (AMD). Therefore, it was sought in this study to evaluate the expression and role of endogenous VEGF in RPE.

View Article and Find Full Text PDF

Purpose: Aberrant retinal blood flow is a hallmark of retinopathies and may be a causative factor in their pathophysiology. In this study, the effects of pulsatile flow on hedgehog and Notch control of retinal endothelial cell and pericyte apoptosis were examined.

Methods: The levels of hedgehog and Notch signaling components in bovine retinal endothelial cells (BRECs) and pericytes (BRPs) were examined in vitro under static conditions and after exposure to pulsatile flow, with a perfused transcapillary co-culture system.

View Article and Find Full Text PDF

Aims: Aberrant retinal blood flow is a hallmark of various retinopathies and may be a causative factor in the pathology associated with these conditions. We examined the effects of pulsatile flow on bovine retinal endothelial cell (BREC) and bovine retinal pericyte (BRP) apoptosis and proliferation.

Methods And Results: Co-cultured BRECs and BRPs were exposed to low (0.

View Article and Find Full Text PDF

The small GTPase RhoA and its downstream effectors, ROCK1 and ROCK2, regulate a number of cellular processes, including cell motility, proliferation, survival, and permeability. Pharmacological inhibitors of the Rho pathway reportedly block angiogenesis; however, the molecular details of this inhibition are largely unknown. We demonstrate that vascular endothelial growth factor-A (VEGF) rapidly induces RhoA activation in endothelial cells (ECs).

View Article and Find Full Text PDF

Aberrant transforming growth factor-beta (TGF-beta) signaling plays a clear role in a number of pathologies, in particular, fibrotic diseases and cancer. Accumulating evidence also suggests that TGF-beta is required for vascular homeostasis, shedding light on the role of circulating TGF-beta and the expression of TGF-beta receptors in the adult vasculature, in the absence of any pathologic processes. In human pathologies such as hereditary hemorrhagic telangiectasia (HHT) and preeclampsia, TGF-beta signaling is abnormal.

View Article and Find Full Text PDF

Objective: Motivated by the central roles that vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-beta play in the assembly and maintenance of the vasculature, we examined the impact of systemic VEGF or TGF-beta signal inhibition on endothelial activation as detected by leukocyte-endothelial interactions.

Methods And Results: VEGF or TGF-beta inhibition, accomplished using adenovirus expression of soluble Flt1 (Ad-sFlt1) or soluble endoglin (Ad-sEng), resulted in a significant increase in the number of leukocytes rolling along the mesenteric venous endothelium and a significant decrease in rolling velocity in Ad-sEng mice. Neutralization of VEGF or TGF-beta resulted in endothelial surface expression of P-selectin and impaired peripheral vasodilatation.

View Article and Find Full Text PDF

Pericyte-endothelial cell (EC) interactions are critical to both vascular development and vessel stability. We have previously shown that TGF-beta signaling between EC and mural cells participates in vessel stabilization in vitro. We therefore investigated the role of TGF-beta signaling in maintaining microvessel structure and function in the adult mouse retinal microvasculature.

View Article and Find Full Text PDF

The Notch signaling pathway is critical for cell fate determination during embryonic development, including many aspects of vascular development. An emerging paradigm suggests that the Notch gene regulatory network is often recapitulated in the context of phenotypic modulation of vascular smooth muscle cells (VSMC), vascular remodeling, and repair in adult vascular disease following injury. Notch ligand receptor interactions lead to cleavage of receptor, translocation of the intracellular receptor (Notch IC), activation of transcriptional CBF-1/RBP-Jkappa-dependent and -independent pathways, and transduction of downstream Notch target gene expression.

View Article and Find Full Text PDF

Background: Vascular endothelial growth factor (VEGF) is well known for its role in normal and pathologic neovascularization. However, a growing body of evidence indicates that VEGF also acts on non-vascular cells, both developmentally as well as in the adult. In light of the widespread use of systemic and intraocular anti-VEGF therapies for the treatment of angiogenesis associated with tumor growth and wet macular degeneration, systematic investigation of the role of VEGF in the adult retina is critical.

View Article and Find Full Text PDF

Although the role of vascular endothelial growth factor (VEGF) in developmental and pathological angiogenesis is well established, its function in the adult is less clear. Similarly, although transforming growth factor (TGF) beta is involved in angiogenesis, presumably by mediating capillary (endothelial cell [EC]) stability, its involvement in quiescent vasculature is virtually uninvestigated. Given the neurological findings in patients treated with VEGF-neutralizing therapy (bevacizumab) and in patients with severe preeclampsia, which is mediated by soluble VEGF receptor 1/soluble Fms-like tyrosine kinase receptor 1 and soluble endoglin, a TGF-beta signaling inhibitor, we investigated the roles of VEGF and TGF-beta in choroid plexus (CP) integrity and function in adult mice.

View Article and Find Full Text PDF

Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation.

View Article and Find Full Text PDF

Although the terms ischemia and hypoxia are often used interchangeably, they represent distinct processes that result in different modulatory effects at the cellular level. Hypoxia is a reduction in oxygen delivery below tissue demand, whereas ischemia is a lack of perfusion, characterized not only by hypoxia but also by insufficient nutrient supply. Hypoxia can be either acute or chronic, and both are centrally regulated by hypoxia-inducible factor, a transcription factor that governs the expression of key response genes such as vascular endothelial growth factor and erythropoietin.

View Article and Find Full Text PDF

Impaired vasoactive release of opposing vasodilator and vasoconstrictor mediators due to endothelial dysfunction is integral to the pathogenesis of diabetic retinopathy. The aim of this study was to determine the effect of hyperglycemia on the expression of endothelial nitric oxide synthase (eNOS) and the release of nitric oxide (NO) in bovine microvascular retinal endothelial cells (BRECs) under both static (basal and acetylcholine stimulated) and flow (laminar shear stress [10 dynes/cm2 and pulsatile flow 0.3 to 23 dynes/cm2) conditions using a laminar shear apparatus and an in vitro perfused transcapillary culture system.

View Article and Find Full Text PDF

Induction of diabetes can produce arterial wall hypoxia preceding the formation of vascular lesions. We therefore determined whether a dynamic interplay exists between hyperglycemia and the major regulator of hypoxia, hypoxia-inducible factor 1-alpha (HIF-1alpha) in controlling hypoxia-induced vascular smooth muscle cell growth in vitro. Bovine aortic smooth muscle cells (BASMC) were exposed to conditions of normal glucose (5.

View Article and Find Full Text PDF

During the last decade, the presumed etiology of glaucoma has moved from a pure pressure concept to a combined mechanical and vascular theory. Evidence of a localized vascular insufficiency leading to perfusion deficits of ocular structures, including the optic nerve head, the retina, the choroid, and the retrobulbar vessels, is now clear. This article evaluates the role of vasospasm as the primary cause of such a vascular failure.

View Article and Find Full Text PDF

Purpose: By the development of a novel retinal microvascular endothelial and pericyte cell coculture system, this study determined the effects of pulsatile flow on the activation of the endothelial cell markers nitric oxide (NO), prostacyclin (PGI2), and endothelin (ET)-1.

Methods: Monocultured bovine retinal endothelial cells (BRECs) and cocultured BRECs with bovine retinal pericytes (BRPs) were exposed to low flow (flow rate, 0.3 mL/min; pulse pressure, 6 mmHg; shear stress, 0.

View Article and Find Full Text PDF