Publications by authors named "Tony Valente"

Transient potential receptor vanilloid 2 (TRPV2) is widely expressed through the nervous system and specifically found in neuronal subpopulations and some glial cells. TRPV2 is known to be sensitized by methionine oxidation, which results from inflammation. Here we aim to characterize the expression and regulation of TRPV2 in myelination pathologies, such as hypomyelination and demyelination.

View Article and Find Full Text PDF

Neuroinflammation, in which activated microglia are involved, appears to contribute to the development of Parkinson's disease (PD). However, the role of microglial activation and the mechanisms governing this process remain uncertain. We focused on one inhibitory mechanism involved in the control of microglial activation, the microglia inhibitory receptor CD200R1, and its ligand CD200, mainly expressed by neurons.

View Article and Find Full Text PDF

Fourier Transform Infrared microspectroscopy (μFTIR) is a very useful method to analyze the biochemical properties of biological samples in situ. Many diseases affecting the central nervous system (CNS) have been studied using this method, to elucidate alterations in lipid oxidation or protein aggregation, among others. In this work, we describe in detail the characteristics between grey matter (GM) and white matter (WM) areas of the human brain by μFTIR, and we compare them with the mouse brain (strain C57BL/6), the most used animal model in neurological disorders.

View Article and Find Full Text PDF

In Huntington's disease (HD), striatal medium spiny neurons (MSNs) are particularly sensitive to the presence of a CAG repeat in the huntingtin (HTT) gene. However, there are many evidences that cells from the peripheral immune system and central nervous system (CNS) immune cells, namely microglia, play an important role in the etiology and the progression of HD. However, it remains unclear whether MSNs neurodegeneration is mediated by a non-cell autonomous mechanism.

View Article and Find Full Text PDF

α-Synuclein is the main component of Lewy bodies, the intracellular protein aggregates representing the histological hallmark of Parkinson's disease. Elevated α-synuclein levels and mutations in SNCA gene are associated with increased risk for Parkinson's disease. Despite this, little is known about the molecular mechanisms regulating SNCA transcription.

View Article and Find Full Text PDF

Microglia are considered to be the resident macrophages of the CNS and main effector of immune brain function. Due to their essential role in the regulation of neuroinflammatory response, microglia constitute an important target for neurological diseases, such as multiple sclerosis, Alzheimer's or Parkinson's disease. The communication between neurons and microglia contributes to a proper maintenance of homeostasis in the CNS.

View Article and Find Full Text PDF

In the brain of patients with multiple sclerosis, activated microglia/macrophages appear in active lesions and in normal appearing white matter. However, whether they play a beneficial or a detrimental role in the development of the pathology remains a controversial issue. The production of pro-inflammatory molecules by chronically activated microglial cells is suggested to contribute to the progression of neurodegenerative processes in neurological disease.

View Article and Find Full Text PDF

Background: CCAAT/enhancer binding protein β (C/EBPβ) is a transcription factor that regulates the expression of important pro-inflammatory genes in microglia. Mice deficient for C/EBPβ show protection against excitotoxic and ischemic CNS damage, but the involvement in this neuroprotective effect of the various C/EBPβ-expressing cell types is not solved. Since C/EBPβ-deficient microglia show attenuated neurotoxicity in culture, we hypothesized that specific C/EBPβ deficiency in microglia could be neuroprotective in vivo.

View Article and Find Full Text PDF

The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is associated with varying cerebrospinal fluid (CSF) levels of oligomeric and total α-synuclein, with a study examining these levels in different PD stages and their correlations with cognitive and motor functions.
  • The research involved 77 subjects, including those with idiopathic REM-sleep behavior disorder (iRBD), non-demented PD, demented PD, and healthy controls, aiming to understand the relationships between CSF α-synuclein and cognitive performance as well as brain structure.
  • Results indicated that higher CSF oligomeric-α-synuclein levels correlated with greater cognitive impairment and motor dysfunction, whereas total-α-synuclein levels were linked
View Article and Find Full Text PDF

The mechanisms that control microglial activation are of interest, since neuroinflammation, which involves reactive microglia, may be an additional target in the search for therapeutic strategies to treat neurodegenerative diseases. Neuron-microglia interaction through contact-dependent or independent mechanisms is involved in the regulation of the microglial phenotype in both physiological and pathological conditions. The interaction between CD200, which is mainly present in neurons but also in astrocytes, and CD200R1, which is mainly present in microglia, is one of the mechanisms involved in keeping the microglial proinflammatory phenotype under control in physiological conditions.

View Article and Find Full Text PDF

The eicosanoid prostaglandin E2 (PGE2 ) plays important roles in neuroinflammation and it is produced by the sequential action of the enzymes cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES). The expression of both enzymes and the production of PGE2 are increased in neuroinflammation. The objective of this study was to elucidate whether the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) regulates the expression of prostaglandin synthesis enzymes in neuroinflammation.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer binding protein δ (C/EBPδ) is expressed in activated astrocytes and microglia and can regulate the expression of potentially detrimental proinflammatory genes. The objective of this study was to determine the role of C/EBPδ in glial activation. To this end, glial activation was analyzed in primary glial cultures and in the central nervous system from wild type and C/EBPδ(-/-) mice.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described.

View Article and Find Full Text PDF

Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) is involved in vascular endothelial damage as well as in the vascular degeneration underlying diabetes mellitus and Alzheimer's disease (AD). Recent evidence suggests that classic pathological features of AD are more pronounced in diabetic mellitus patients. To investigate the expression and distribution of SSAO/VAP-1 in the two pathologies, we have performed an immunohistochemical study in human hippocampal vessels of AD, AD with diabetic mellitus (ADD), diabetic mellitus (DM), and nondemented (ND) patients.

View Article and Find Full Text PDF

We examined whether LMN diet, reported to induce neurogenesis in adult mice, was able to antagonize the age-related behavioural impairment and neuropathology in wild type (WT) mice and Tg2576 mice, a mouse model of Alzheimer's disease (AD). Thirteen-month-old mice (once the amyloid (Aβ) plaques were formed) were fed with the LMN diet for 5 months, and in the last 2 months of the regimen they received a battery of behavioural tests. In general, both aging and (to a higher extent) Tg2576 genotype deteriorated sensorimotor reflexes, exploratory behaviour in the hole board, activity (but not anxiety) in the elevated plus-maze, ambulation in the home cage during the dark phase, and spatial learning in the Morris water maze.

View Article and Find Full Text PDF

Neuroinflammation is thought to play a pathogenic role in many neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). In this study we demonstrate that the expression of nitric oxide (NO) synthase-2 (NOS2), and cyclooxygenase (COX)-2 induced by lipopolysaccharide (LPS) with interferon-γ is higher in microglial-enriched cultures from G93A-SOD1 mice, an ALS animal model, than from wild type mice. The levels of CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor that regulates proinflammatory gene expression, are also upregulated in activated G93A-SOD1 microglial cells.

View Article and Find Full Text PDF

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD), but a mechanistic connection between both pathologies has not been provided so far. Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (Abeta).

View Article and Find Full Text PDF

At present it is widely accepted that there are at least two neurogenic sites in the adult mammalian brain: the subventricular zone (SVZ) of lateral ventricles and the subgranular zone (SGZ) of the hippocampus dentate gyrus. The adult proliferation rate declines with aging and is altered in several neurodegenerative pathologies including Alzheimer's disease. The aim of this work was to study whether a natural diet rich in polyphenols and polyunsaturated fatty acids (LMN diet) can modulate neurogenesis in adult mice and give insight into putative mechanisms.

View Article and Find Full Text PDF

Cryolesion of the frontoparietal cortex in mice is a well-described brain injury paradigm that results in increased astrogliosis surrounding the lesion site and is accompanied by a prominent increase in the MAO-B levels in astrocytes. Whether these increased MAO-B levels contribute to cellular damage or modulate reactive astrocytosis remains unclear. MAO-B activity may contribute to cellular damage, since its metabolism products are highly toxic to the cells.

View Article and Find Full Text PDF

SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines.

View Article and Find Full Text PDF

Zac1, a new zinc-finger protein that regulates both apoptosis and cell cycle arrest, is abundantly expressed in many neuroepithelia during early brain development. In the present work, we study the expression of Zac1 during early embryogenesis and we determine the cellular phenotype of the Zac1-expressing cells throughout development. Our results show that Zac1 is expressed in the progenitor/stem cells of several tissues (nervous system, skeleton, and skeletal muscle), because they colocalize with several progenitor/stem markers (Nestin, glial fibrillary acidic protein, FORSE-1, proliferating cell nuclear antigen, and bromodeoxyuridine).

View Article and Find Full Text PDF

We examine the expression pattern of ZnT3 in the cerebral and cerebellar areas of mouse brain throughout development. During embryogenesis and early postnatal stages, ZnT3 transcripts were detected in several areas. Label was clear in areas related to proliferation and differentiation.

View Article and Find Full Text PDF

The appearance and distribution of zinc-rich terminal fields in the rat forebrain was analyzed at 12 stages of postnatal development using the selenium method. Zinc stain was detected in neonates in piriform, cingulate, and motor cortices, septal area, and hippocampal formation. In the neocortex, a laminar pattern appeared progressively following an inside-out gradient: layer VI at postnatal day 0 (P0), layer V at P1, layers Va and Vb at P5, layer II-III at P9, and layer IV at P12.

View Article and Find Full Text PDF