Complement receptor 1 (CR1) is a membrane glycoprotein with a highly duplicated domain structure able to bind multiple ligands such as C3b and C4b, the activated fragments of complement components C3 and C4, respectively. We have previously used our knowledge of this domain structure to identify CSL040, a soluble extracellular fragment of CR1 containing the long homologous repeat (LHR) domains A, B, and C. CSL040 retains the ability to bind both C3b and C4b but is also a more potent complement inhibitor than other recombinant CR1-based therapeutics.
View Article and Find Full Text PDFHuman complement receptor 1 (CR1) is a membrane-bound regulator of complement that has been the subject of recent attempts to generate soluble therapeutic compounds comprising different fragments of its extracellular domain. This review will focus on the extracellular domain of CR1 and detail how its highly duplicated domains work both separately and together to mediate binding to its main ligands C3b and C4b, and to inhibit the classical, lectin, and alternative pathways of the complement cascade via the mechanisms of decay acceleration activity (DAA) and co-factor activity (CFA). Understanding the molecular basis of CR1 activity is made more complicated by the presence not only of multiple ligand binding domains within CR1 but also the fact that C3b and C4b can interact with CR1 as both monomers, dimers, and heterodimers.
View Article and Find Full Text PDFHuman Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood.
View Article and Find Full Text PDFThe complement system is a potent mediator of ischemia-reperfusion injury (IRI), which detrimentally affects the function and survival of transplanted kidneys. Human complement receptor 1 (HuCR1) is an integral membrane protein that inhibits complement activation by blocking the convertases that activate C3 and C5. We have previously reported that CSL040, a truncated form of recombinant soluble HuCR1 (sHuCR1), has enhanced complement inhibitory activity and improved pharmacokinetic properties compared to the parent molecule.
View Article and Find Full Text PDFThe Köhler effect is a social-psychological group motivation gain phenomenon that has been successfully adapted to video-based exercise games (exergames) using human partners. This research then shifted to using software-generated partners (SGPs), providing greater flexibility and adaptability to manipulate the game environment to be most motivating for the user. However, recent SGP-based experiments have demonstrated a diminished motivation gain effect.
View Article and Find Full Text PDFHuman complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays.
View Article and Find Full Text PDFActivation of Fc receptors and complement by immune complexes is a common important pathogenic trigger in many autoimmune diseases and so blockade of these innate immune pathways may be an attractive target for treatment of immune complex-mediated pathomechanisms. High-dose IVIG is used to treat autoimmune and inflammatory diseases, and several studies demonstrate that the therapeutic effects of IVIG can be recapitulated with the Fc portion. Further, recent data indicate that recombinant multimerized Fc molecules exhibit potent anti-inflammatory properties.
View Article and Find Full Text PDFinfected mice with an established -specific inflammatory immune response were protected from developing alveolar bone resorption by therapeutic vaccination with a chimera (KAS2-A1) immunogen targeting the major virulence factors of the bacterium, the gingipain proteinases. Protection was characterised by an antigen-specific IgG1 isotype antibody and Th2 cell response. Adoptive transfer of KAS2-A1-specific IgG1 or IgG2 expressing B cells confirmed that IgG1-mediated protection.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2016
Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain.
View Article and Find Full Text PDFChronic periodontitis is an inflammatory disease of the supporting tissues of the teeth associated with a polymicrobial biofilm (subgingival plaque) accreted to the tooth which results in destruction of the tooth's supporting tissues. A characteristic feature of the disease-associated plaque is the emergence of proteolytic species. One of these species, Porphyromonas gingivalis has recently been described as a keystone pathogen as it dysregulates the host immune response to favour the polymicrobial biofilm disrupting homeostasis to cause dysbiosis and disease.
View Article and Find Full Text PDFExogenous delivery of carrier-linked phosphatidylinositol 3-phosphate [PtdIns(3)P] to adipocytes promotes the trafficking, but not the insertion, of the glucose transporter GLUT4 into the plasma membrane. However, it is yet to be demonstrated if endogenous PtdIns(3)P regulates GLUT4 trafficking and, in addition, the metabolic pathways mediating plasma membrane PtdIns(3)P synthesis are uncharacterized. In unstimulated 3T3-L1 adipocytes, conditions under which PtdIns(3,4,5)P3 was not synthesized, ectopic expression of wild-type, but not catalytically inactive 72-kDa inositol polyphosphate 5-phosphatase (72-5ptase), generated PtdIns(3)P at the plasma membrane.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2005
Ypt/Rabs are Ras-related GTPases that function as key regulators of intracellular vesicular trafficking. Their slow intrinsic rates of GTP hydrolysis are catalyzed by GTPase-activating proteins (GAPs). Ypt/Rab-GAPs constitute a family of proteins that contain a TBC (Tre-2/Bub2/Cdc16) domain.
View Article and Find Full Text PDFEndosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P2] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Ialpha inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P2, forming PtdIns(3)P, but its subcellular localization is unknown.
View Article and Find Full Text PDFApplying high-throughput proteomic analysis of mammalian cells can facilitate the identification of a large number of proteins expressed in the examined samples. Moreover, extensive research efforts are being made to perform large-scale characterization of membrane proteins. Here we use mass spectrometry-based proteomic strategy to characterize protein expression in membrane-enriched fractions derived from human NK lymphoma cell line YTS.
View Article and Find Full Text PDFInitiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake.
View Article and Find Full Text PDFRab/Ypt GTPases play key roles in the regulation of vesicular trafficking. They perform most of their functions in a GTP-bound form by interacting with specific downstream effectors. The exocyst is a complex of eight polypeptides involved in constitutive secretion and functions as an effector for multiple Ras-related small GTPases, including the Rab protein Sec4p in yeast.
View Article and Find Full Text PDFMembers of the SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated SNAREs syntaxin 1 and SNAP25, and the vesicle-associated SNARE VAMP2, is necessary for synaptic vesicle exocytosis. Several accessory factors have been described that associate with the synaptic SNAREs and modulate core complex assembly or mediate Ca2+ regulation.
View Article and Find Full Text PDF