Publications by authors named "Tony Remans"

Comprehending the decomposition process is crucial for our understanding of the mechanisms of carbon (C) sequestration in soils. The decomposition of plant biomass has been extensively studied. It revealed that extrinsic biomass properties that restrict its access to decomposers influence decomposition more than intrinsic ones that are only related to its chemical structure.

View Article and Find Full Text PDF

The resistance of crops to herbicides can be due to target site based resistance or non-target site based resistance mechanisms or a combination of both. In non-target site resistance, the detoxification efficiency plays a major role by involvement of enzymes such as P450s, GTs, GSTs and ABC transporters. The resistance of the first commercial Clearfield sunflower hybrids (Imisun trait) to herbicides of imidazolinone group is based on a combination of both types of resistance.

View Article and Find Full Text PDF

: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery () is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM).

View Article and Find Full Text PDF

Background: MicroRNAs are important posttranscriptional regulators of gene expression playing a role in developmental processes as well as in stress responses, including metal stress responses. Despite the identification of several metal-responsive miRNAs, the regulation and the role of these miRNAs and their targets remain to be explored. In this study, miRNAs involved in the response to Cd and Cu excess in Arabidopsis thaliana are identified.

View Article and Find Full Text PDF

Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • Plant survival in tough environmental conditions depends on their ability to adapt both physically and physiologically, particularly in their root systems.
  • Hormones play a key role in regulating root growth and changes in response to stressors like metal contamination, though many underlying processes are still not fully understood.
  • This study focuses on the gene networks in Arabidopsis thaliana and reviews the impact of various plant hormones on root development, highlighting the importance of understanding these interactions to better grasp how plants cope with stress from metals like cadmium, copper, and zinc.
View Article and Find Full Text PDF

Background And Aims: Cadmium (Cd) is a non-essential trace element that elicits oxidative stress. Plants respond to Cd toxicity via increasing their Cd-chelating and antioxidative capacities. They predominantly chelate Cd via glutathione (GSH) and phytochelatins (PCs), while antioxidative defence is mainly based on the use and recycling of both GSH and ascorbate (AsA), complemented by superoxide dismutase (SOD) and catalase (CAT).

View Article and Find Full Text PDF

This study aims to unravel the functional significance of alternative oxidase1a (AOX1a) induction in Arabidopsis thaliana leaves exposed to cadmium (Cd) by comparing wild-type (WT) plants and aox1a knockout mutants. In the absence of AOX1a, differences in stress-responsive transcript and glutathione levels suggest an increased oxidative challenge during moderate (5 µM) and prolonged (72h) Cd exposure. Nevertheless, aox1a knockout leaves showed lower hydrogen peroxide (H2O2) accumulation as compared to the WT due to both acute (24h) and prolonged (72h) exposure to 5 µM Cd, but not to 10 µM Cd.

View Article and Find Full Text PDF

Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments.

View Article and Find Full Text PDF

Background: Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses.

View Article and Find Full Text PDF

This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence).

View Article and Find Full Text PDF

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.

View Article and Find Full Text PDF

Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV.

View Article and Find Full Text PDF

Worldwide, metals have been distributed to excessive levels in the environment due to industrial and agricultural activities. Plants growing on soils contaminated with excess levels of metals experience a disturbance of the cellular redox balance, which leads to an augmentation of reactive oxygen species (ROS). Even though the increased ROS levels can cause cellular damage, controlled levels play an important role in modulating signaling networks that control physiological processes and stress responses.

View Article and Find Full Text PDF

To date, almost no information is available in roots and shoots of the model plant Arabidopsis thaliana about the hierarchic relationship between metal accumulation, phytohormone levels, and glutathione/phytochelatin content, and how this relation affects root development. For this purpose, specific concentrations of cadmium, copper and zinc, alone or in triple combination, were supplied for 12 days to in vitro growing seedlings. The accumulation of these metals was measured in roots and shoots, and a significant competition in metal uptake was observed.

View Article and Find Full Text PDF

In plants, microRNAs (miRNAs) control various biological processes by negatively regulating the expression of complementary target genes, either (1) post-transcriptionally by cleavage or translational inhibition of target mRNA, or (2) transcriptionally by methylation of target DNA. Besides their role in developmental processes, miRNAs are main players in stress responses, including metal stress responses. Exposure of plants to excess metal concentrations disturbs the cellular redox balance and enhances ROS accumulation, eventually leading to oxidative damage or signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research supports the idea that MAPK signaling plays a key role in how plants defend against metal stress, specifically focusing on the oxidative signal-inducible kinase (OXI1).
  • Experiments comparing oxi1 knockout plants to wild-type showed that OXI1 is important for activating defenses against copper stress but does not play a significant role in responses to cadmium stress.
  • Specifically, OXI1's influence on lipoxygenase activation and antioxidative defense mechanisms, like catalase and superoxide dismutases, highlights distinct responses to metal stress, suggesting different pathways are utilized for copper versus cadmium exposure.
View Article and Find Full Text PDF

Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses.

View Article and Find Full Text PDF

Background And Scope: Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture.

View Article and Find Full Text PDF

Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health.

View Article and Find Full Text PDF

A general status of oxidative stress in plants caused by exposure to elevated metal concentrations in the environment coincides with a constraint on mitochondrial electron transport, which enhances ROS accumulation at the mitochondrial level. As mitochondria are suggested to be involved in redox signaling under environmental stress conditions, mitochondrial ROS can initiate a signaling cascade mediating the overall stress response, i.e.

View Article and Find Full Text PDF

Plants exposed to cadmium (Cd) show morphological and physiological disorders. To increase our knowledge regarding Cd-induced signalling, most often the effects of acute exposure are investigated. However, this does not allow in-depth analysis of morphological effects.

View Article and Find Full Text PDF

The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress.

View Article and Find Full Text PDF

When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days.

View Article and Find Full Text PDF