The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses.
View Article and Find Full Text PDFWith the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF) during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2014
Concentration gradients of guidance molecules influence cell behavior and growth in biological tissues and are therefore of interest for the design of biomedical scaffolds for regenerative medicine. We developed an electrospining method to generate a dual-gradient of bioactive molecules and fiber density along electrospun nanofibers without any post spinning treatment. Functionalization with fluorescent molecules demonstrated the efficiency of the method to generate a discontinuous concentration gradient along the aligned fibers.
View Article and Find Full Text PDF