Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system.
View Article and Find Full Text PDFTinnitus is the phantom perception of sounds occurring in the absence of an external auditory stimulus. Tinnitus: [1] effects 50 million individuals, [2] often results from acoustic trauma and, [3] is very often exacerbated under stressful conditions. Tinnitus may result from lesions occurring at any location in the auditory system, but its mechanisms are poorly understood.
View Article and Find Full Text PDFDynorphins, glutamate, and glutamate-sensitive N-Methyl-D-Aspartate (NMDA) receptors exist in the mammalian cochlea. Dynorphins produce neural excitation and excitotoxic effects in the spinal cord through a kappa-opioid facilitation of NMDA receptor-sensitivity to glutamate. The kappa-opioid receptor drug agonists N-dimethylallyl-normetazocine [(-)-pentazocine (50 mmol)] and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide [U-50488H (100 mmol)] were administered across the cochlear round window membrane in the chinchilla.
View Article and Find Full Text PDF