This study demonstrates the preparation and characterization of ibuprofen (IBP) microparticles with some excipients by a controlled crystallization technique with improved dissolution performance. Using the optimum concentrations pluronic F127, hydroxypropyl methyl cellulose, D-mannitol, and l-leucine in aqueous ethanol, the IBP microparticles were prepared. The dissolution tests were performed in phosphate buffer saline using a United States Pharmacopoeia dissolution tester at 37°C.
View Article and Find Full Text PDFStability and release properties of CO-α-cyclodextrin complex powder prepared by solid encapsulation (water activity, a ≈ 0.95) followed by moisture removal using silica gel and CaCl desiccants during post-dehydration were investigated. The results showed that CaCl reduced a much faster than silica gel did under the same conditions.
View Article and Find Full Text PDFThis study aims to characterize CO2-α-cyclodextrin (α-CD) inclusion complexes produced from amorphous α-CD powder at moisture contents (MC) close to or higher than the critical level of crystallization (e.g. 13, 15 and 17% MC on wet basis, w.
View Article and Find Full Text PDFThis study investigated the effects of water-induced crystallization of amorphous alpha-cyclodextrin (α-CD) powder on CO2 encapsulation at 0.4-1.6 MPa pressure for 1-72 h through the addition of water (to reach to 13, 15 and 17% wet basis, w.
View Article and Find Full Text PDFCarbon dioxide complexation was undertaken into solid matrices of amorphous and crystalline α-cyclodextrin (α-CD) powders, under various pressures (0.4-1.6 MPa) and time periods (4-96 h).
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2015
Some salts have been proven to inhibit bubble coalescence above a certain concentration called the transition concentration. The transition concentration of salts has been investigated and determined by using different techniques. Different mechanisms have also been proposed to explain the stabilizing effect of salts on bubble coalescence.
View Article and Find Full Text PDFThe kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size, viscosity, surface tensions, and contact angle.
View Article and Find Full Text PDFIn order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.
View Article and Find Full Text PDFTwo methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.
View Article and Find Full Text PDFEvaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum.
View Article and Find Full Text PDFTwo-dimensional numerical simulations of particle advection in a channel flow with spatially periodic heating have been carried out. The velocity field is found to be periodic above a critical Rayleigh number of around 18 000 and a Reynolds number of 10. Particle motion becomes chaotic in the lower half plane almost immediately after this critical value is surpassed, as characterized by the power spectral density and Poincare section of the flow.
View Article and Find Full Text PDF