Publications by authors named "Tony G J Ingram"

Here we present a task developed to probe implicit learning of a complex motor skill. This task addresses limitations related to task complexity noted in the literature for methods investigating implicit motor learning, namely the serial reaction time task and continuous tracking task. Specifically, the serial reaction time task is limited by the kinematic simplicity of the required movement and the continuous tracing task faces time-on-task confounds and limitations in the control of task difficulty.

View Article and Find Full Text PDF

Acting in the environment results in both intended and unintended consequences. Action consequences provide feedback about the adequacy of actions while they are in progress and when they are completed and therefore contribute to monitoring actions, facilitate error detection, and are crucial for motor learning. In action imagery, no actual action takes place, and consequently, no actual action consequences are produced.

View Article and Find Full Text PDF

Introduction: Improved understanding of the relationship between post-stroke rehabilitation interventions and functional motor outcomes could result in improvements in the efficacy of post-stroke physical rehabilitation. The laterality of motor cortex activity (M1-LAT) during paretic upper-extremity movement has been documented as a useful biomarker of post-stroke motor recovery. However, the expensive, labor intensive, and laboratory-based equipment required to take measurements of M1-LAT limit its potential clinical utility in improving post-stroke physical rehabilitation.

View Article and Find Full Text PDF

Theories of motor imagery conflict in their account of what happens during an imagined movement, with some suggesting that movement is simulated while others suggest it involves creating and elaborating upon an internal representation of the movement. Here we report evidence that imagery involves the simulation of a movement and that it varies in accuracy. Two groups of participants performed a motor task focused on challenging movement execution either overtly or via motor imagery.

View Article and Find Full Text PDF

This study's purpose is to characterize the performance of a prototype functional near-infrared spectroscopy (fNIRS) headband meant to enable quick and easy measurements from the sensorimotor cortices. The fact that fNIRS is well-suited to ergonomic designs (i.e.

View Article and Find Full Text PDF

The mouse primary visual cortex (V1) has become an important brain area for exploring how neural circuits process information. Optogenetic tools have helped to outline the connectivity of a local V1 circuit comprising excitatory pyramidal neurons and several genetically-defined inhibitory interneuron subtypes that express parvalbumin, somatostatin, or vasoactive intestinal peptide. Optogenetic modulation of individual interneuron subtypes can alter the visual responsiveness of pyramidal neurons with distinct forms of inhibition and disinhibition.

View Article and Find Full Text PDF

Sensory feedback has traditionally been considered critical for motor learning. While it has been shown that motor learning can occur in the absence of visual or somatosensory feedback, it is thought that at least one must be present. This assumption contrasts with literature demonstrating that motor imagery (MI) - the mental rehearsal of a movement - is capable of driving motor learning even though the lack of actual execution precludes sensory feedback related to movement.

View Article and Find Full Text PDF

Evidence has suggested that patients' expectations influence the clinical course when they present with low back pain (LBP). However, little empirical evidence has outlined the nature of these expectations. The aim of this study was to describe LBP patients' expectations of physiotherapy.

View Article and Find Full Text PDF

Motor imagery (MI), the mental rehearsal of movement, facilitates learning by driving brain activation similar to that of physical practice (PP). However, a growing body of evidence suggests that learning via MI relies more on effector independent as opposed to effector dependent encoding. One approach to probing the nature of MI based learning is to study the primary motor cortex (MC), a brain region known to be critical to effector dependent encoding, but whose involvement in MI is debatable.

View Article and Find Full Text PDF

Central or postural set theory suggests that the central nervous system uses short term, trial to trial adaptation associated with repeated exposure to a perturbation in order to improve postural responses and stability. It is not known if longer-term prior experiences requiring challenging balance control carryover as long-term adaptations that influence ability to react in response to novel stimuli. The purpose of this study was to determine if individuals who had long-term exposure to balance instability, such as those who train on specific skills that demand balance control, will have improved ability to adapt to complex continuous multidirectional perturbations.

View Article and Find Full Text PDF

Motor imagery (MI), the mental rehearsal of movement, is an effective means for acquiring a novel skill, even in the absence of physical practice (PP). The nature of this learning, be it perceptual, motor, or both, is not well understood. Understanding the mechanisms underlying MI-based skill acquisition has implications for its use in numerous disciplines, including informing best practices regarding its use.

View Article and Find Full Text PDF

Introduction: The potential relationship between bilateral quadriceps inhibition in individuals with unilateral anterior knee pain (AKP) and gamma loop dysfunction is examined in this study.

Methods: Twelve individuals with unilateral AKP and 10 healthy controls were recruited. Quadriceps voluntary activation (%VA) was quantified using a triggered interpolated twitch technique.

View Article and Find Full Text PDF