Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.
View Article and Find Full Text PDFPulmonary fibrosis is excessive scarring of the lung tissues. Transforming growth factor-beta (TGF-β) has been implicated in pulmonary fibrosis due to its ability to induce the epithelial-to-mesenchymal transition (EMT) and promote epithelial cell migration. Cyclin-dependent kinase 8 (CDK8) can mediate the TGF-β signaling pathways and could function as an alternative therapeutic target for treating pulmonary fibrosis.
View Article and Find Full Text PDFThe dual-specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) presents a promising therapeutic target for neurological diseases. However, current inhibitors lack selectivity, which can lead to unexpected side effects and increase the difficulty of studying DYRK1A. Therefore, identifying selective inhibitors targeting DYRK1A is essential for reducing side effects and facilitating neurological disease research.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) has limited treatment options, underscoring the urgent need for developing new therapies. The upregulation of TBK1 activity plays a crucial role in multiple pancreatic cancer-related signaling pathways, suggesting that inhibiting the kinase activity of TBK1 could be a promising strategy. Herein, we discovered a novel TBK1 inhibitor, LIB3S0280, using a structure-based virtual screening (SBVS) strategy.
View Article and Find Full Text PDFDual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, with tau pathology caused by abnormally activated dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) being one of the culprits. Coumestrol, a phytoestrogen and natural antioxidant found in various plants, has been reported to alleviate AD, but the underlying mechanism remains unclear. We confirmed coumestrol as a novel DYRK1A inhibitor through enzyme-based assays, X-ray crystallography, and cell line experiments.
View Article and Find Full Text PDFClass IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs.
View Article and Find Full Text PDFThe rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor 6 exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI values of 0.24 and 0.
View Article and Find Full Text PDFMarine natural products offer immense potential for drug development, but the limited supply of marine organisms poses a significant challenge. Establishing aquaculture presents a sustainable solution for this challenge by facilitating the mass production of active ingredients while reducing our reliance on wild populations and harm to local environments. To fully utilize aquaculture as a source of biologically active products, a cell-free system was established to target molecular components with protein-modulating activity, including topoisomerase II, HDAC, and tubulin polymerization, using extracts from aquaculture corals.
View Article and Find Full Text PDFThe identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition.
View Article and Find Full Text PDFDysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC.
View Article and Find Full Text PDFGlaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents.
View Article and Find Full Text PDFThe overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), commonly observed in neurodegenerative diseases like Alzheimer's disease (AD) and Down syndrome (DS), can induce the formation of neurofibrillary tangles (NFTs) and amyloid plaques. Hence, designing a selective DYRK1A inhibitor would result in a promising small molecule for treating neurodegenerative diseases. Developing selective inhibitors for DYRK1A has been a difficult challenge due to the highly preserved ATP-binding site of protein kinases.
View Article and Find Full Text PDFThe KSO-mediated generation of -iminoquinone contributed to the regioselective substitution of isoquinolin-5,8-dione. This hydroxyl group-guided substitution was also applied to selected heterocycles and addressed the regioselectivity issue of quinones. This study has provided an expeditious pathway from isoquinolin-5-ol (5) to ellipticine (1) and isoellipticine (2), which benefits the comprehensive comparison of their activity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties.
View Article and Find Full Text PDFClass II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents.
View Article and Find Full Text PDFMonoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively.
View Article and Find Full Text PDF13-Acetoxysarcocrassolide (13-AC) is a marine cembranoid derived from the aquaculture soft coral of Lobophytum crassum. The cytotoxic effect of 13-AC against leukemia cells was previously reported but its mechanism of action is still unexplored. In the current study, we showed that 13-AC induced apoptosis of human acute lymphoblastic leukemia Molt4 cells, as evidenced by the cleavage of PARP and caspases, phosphatidylserine externalization, as well as the disruption of mitochondrial membrane potential.
View Article and Find Full Text PDFProstate cancer is a prevalent malignancy among men globally, and androgen deprivation therapy is the conventional first-line treatment for metastatic prostate cancer. While androgen deprivation therapy is efficacious in castration-sensitive prostate cancer, it remains less effective in castration-resistant cases. Transcriptional dysregulation is a well-established hallmark of cancer, and targeting proteins involved in transcriptional regulation, such as cyclin-dependent kinase 8 (CDK8), has become an attractive therapeutic strategy.
View Article and Find Full Text PDFBackground And Purpose: Acute respiratory distress syndrome (ARDS) is a catastrophic pulmonary inflammatory dysfunction with a high mortality rate. An overwhelming immune response by neutrophils is a key feature in infective or sterile ARDS. The formyl peptide receptor 1 (FPR1) is a crucial damage-sensing receptor for inflammatory reactions in the initiation and progression of neutrophil-mediated ARDS.
View Article and Find Full Text PDFCyclin-dependent protein kinase 8 (CDK8) plays important roles in regulating fibrotic growth factors and inflammatory signaling pathways. Long-term chronic inflammation of the lungs can lead to idiopathic pulmonary fibrosis (IPF). Abnormal alveolar epithelial regeneration leads to the release of various fibrotic growth factors and the activation of inflammatory cells.
View Article and Find Full Text PDFInhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated.
View Article and Find Full Text PDFBiomed Pharmacother
October 2022
Glutaminase (GLS) serves a critical bioenergetic role for malignant tumor growth and has become a valuable therapeutic target for cancer treatment. Herein, we performed a structure-based virtual screening to discover novel GLS inhibitors and provide information for developing new GLS inhibitors. We identified critical pharmacological interactions in the GLS1 binding site by analyzing the known GLS1 inhibitors and selected potential inhibitors based on their docking score and pharmacological interactions.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment.
View Article and Find Full Text PDF