We have previously demonstrated the unexpected neuroprotection of the anti-cancer agent SU4312 in cellular models associated with Parkinson's disease (PD). However, the precise mechanisms underlying its neuroprotection are still unknown, and the effects of SU4312 on rodent models of PD have not been characterized. In the current study, we found that the protection of SU4312 against 1-methyl-4-phenylpyridinium ion (MPP)-induced neurotoxicity in PC12 cells was achieved through the activation of transcription factor myocyte enhancer factor 2D (MEF2D), as evidenced by the fact that SU4312 stimulated myocyte enhancer factor 2 (MEF2) transcriptional activity and prevented the inhibition of MEF2D protein expression caused by MPP, and that short hairpin RNA (ShRNA)-mediated knockdown of MEF2D significantly abolished the neuroprotection of SU4312.
View Article and Find Full Text PDFβ-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer's disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons.
View Article and Find Full Text PDFBis(12)-hupyridone (B12H), derived from the Chinese medicinal component huperzine A, was originally designed as a novel acetylcholinesterase (AChE) inhibitor. In this paper, we report that B12H (24-h pretreatment) effectively blocked glutamate-induced neuronal excitotoxicity in cerebellar granule neurons (CGNs). However, the huge discrepancy between the EC50 value and IC50 value of B12H, to protect against neuronal toxicity (0.
View Article and Find Full Text PDFBackground And Purpose: SU4312, a potent and selective inhibitor of VEGF receptor-2 (VEGFR-2), has been designed to treat cancer. Recent studies have suggested that SU4312 can also be useful in treating neurodegenerative disorders. In this study, we assessed neuroprotection by SU4312 against 1-methyl-4-phenylpyridinium ion (MPP(+) )-induced neurotoxicity and further explored the underlying mechanisms.
View Article and Find Full Text PDFSU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action.
View Article and Find Full Text PDFBackground: Total shoulder arthroplasty (TSA) is commonly performed for arthritic conditions of the shoulder. The outcome after TSA is generally good, but there are several modes of failure, with one of the more common reasons being glenoid loosening. One possible cause for glenoid loosening is inadequate cementation technique.
View Article and Find Full Text PDFTreatment of the stiff elbow by arthroscopic capsular release is a relatively new and effective procedure. The surgery is technically demanding and is not indicated in all cases of stiff elbow. Although neurologic complications are unusual, they can be severe and permanent.
View Article and Find Full Text PDF