Publications by authors named "Tony Chao"

Background: Sepsis is the leading cause of mortality among burn patients that survive acute resuscitation. Clinical criteria have poor diagnostic value for burn-induced sepsis, making it difficult to diagnose. Protein biomarkers (e.

View Article and Find Full Text PDF

Objective: To determine the effects of short bouts of ergometric exercises on the number of days in the burn intensive care unit (ICU), body mass, and functional ambulation.

Design: Multi-center, randomized controlled trial.

Setting: Burn intensive care unit.

View Article and Find Full Text PDF

Objectives: To compare the diagnostic value of clinical sepsis criteria to novel protein biomarkers in the burn patient.

Design: Prospective observational study.

Setting: American Burn Association verified Burn Center ICU.

View Article and Find Full Text PDF

Background: Patients with severe burn injury (over 20% of the total body surface area) experience profound hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion. While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case with the stem cells associated with the adipose tissue.

View Article and Find Full Text PDF

The acute systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction (MOD) that occur in large burn injuries may be attributed, in part, to immunosuppressive responses such as decreased lymphocytes. However, the mitochondrial bioenergetics of lymphocytes after severe burn injury are poorly understood. The purpose of this study was to examine mitochondrial function of lymphocytes following severe burns in a swine model.

View Article and Find Full Text PDF

Background: Hemodynamic aberrations after severe burns are treated with aggressive intravenous (IV) fluid resuscitation however, oral resuscitation has been proposed in resource poor scenarios. Previously we have shown that animals receiving oral fluid following burns were able to recover kidney function. However, immune function such as circulating and splenic immune cell populations after oral or intravenous fluid administration was not examined.

View Article and Find Full Text PDF

Background: In recent combat operations, 5% to 15% of casualties sustained thermal injuries, which require resource-intensive therapies. During prolonged field care or when caring for patients in a multidomain battlefield, delayed transport will complicate the challenges that already exist in the burn population. A lack of resources and/or vascular access in the future operating environment may benefit from alternative resuscitation strategies.

View Article and Find Full Text PDF

Severe burn injury results in systemic disruption of metabolic regulations and impaired cardiac function. Restoration of hemodynamic homeostasis utilizing intravenous (IV) fluids is critical for acute care of the burn victim. However, the effects of burns and resuscitation on cardiomyocyte mitochondria are currently unknown.

View Article and Find Full Text PDF

Volumetric muscle loss (VML) occurs after severe orthopedic trauma and results in loss of muscle fibers and function that can leave patients permanently disabled. Although animals models of VML are useful to test possible therapeutic strategies, the pathophysiological characteristics of remaining skeletal muscle and changes in metabolism are not thoroughly understood. Herein, alterations of neuromuscular function, muscle fiber morphology, myosin heavy chain expression, and myofiber mitochondrial respiration were evaluated in an adult Yorkshire swine VML injury model.

View Article and Find Full Text PDF

Sepsis is a common and often fatal consequence of severe burn injury, but its exact effects on whole body and muscle metabolism in the burn patient is unclear. To address this, 13 septic and 11 nonseptic patients (age: 36.9 ± 13.

View Article and Find Full Text PDF

Severe thermal injury induces metabolic and physiological stress, prompting a disruption in the hypothalamic-pituitary-adrenal axis. The objective of this study was to evaluate potential confounding effects of Lactated Ringer's (LR) resuscitation on adrenal damage and cortisol production following burn. Anesthetized swine were instrumented with jugular catheters and sustained 40% TBSA burns from brass probes heated to 100°C.

View Article and Find Full Text PDF

Introduction: Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) plays an important role in mammalian thermoregulation. The component of BAT mitochondria that permits this function is the inner membrane carrier protein uncoupling protein 1 (UCP1). To the best of our knowledge, no studies have directly quantified UCP1 function in human BAT.

View Article and Find Full Text PDF

Burn trauma results in prolonged hypermetabolism and skeletal muscle wasting. How hypermetabolism contributes to muscle wasting in burn patients remains unknown. We hypothesized that oxidative stress, cytosolic protein degradation, and mitochondrial stress as a result of hypermetabolism contribute to muscle cachexia postburn.

View Article and Find Full Text PDF

Recent studies suggest that brown adipose tissue (BAT) plays a role in energy and glucose metabolism in humans. However, the physiological significance of human BAT in lipid metabolism remains unknown. We studied 16 overweight/obese men during prolonged, non-shivering cold and thermoneutral conditions using stable isotopic tracer methodologies in conjunction with hyperinsulinemic-euglycemic clamps and BAT and white adipose tissue (WAT) biopsies.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) plays an important role in thermoregulation in rodents. Its role in temperature homeostasis in people is less studied. To this end, we recruited 18 men [8 subjects with no/minimal BAT activity (BAT-) and 10 with pronounced BAT activity (BAT+)].

View Article and Find Full Text PDF

The long-term impact of burn trauma on skeletal muscle bioenergetics remains unknown. Here, the authors determined respiratory capacity and function of skeletal muscle mitochondria in healthy individuals and in burn victims for up to 2 years postinjury. Biopsies were collected from the m.

View Article and Find Full Text PDF

Severe burn injury produces a plethora of metabolic abnormalities which contribute to the prolonged morbidity of burn survivors. The authors have recently demonstrated trans-differentiation of white adipose tissue (WAT) after burn trauma, toward a more thermogenic phenotype. However, the impact of burn injury on subcutaneous WAT (sWAT) morphology in humans is unknown.

View Article and Find Full Text PDF

Acute alterations in skeletal muscle protein metabolism are a well-established event associated with the stress response to burns. Nevertheless, the long-lasting effects of burn injury on skeletal muscle protein turnover are incompletely understood. This study was undertaken to investigate fractional synthesis (FSR) and breakdown (FBR) rates of protein in skeletal muscle of pediatric burn patients (n  =  42, >30% total body surface area burns) for up to 1 year after injury.

View Article and Find Full Text PDF

Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals.

View Article and Find Full Text PDF

Elevated metabolic rate is a hallmark of the stress response to severe burn injury. This response is mediated in part by adrenergic stress and is responsive to changes in ambient temperature. We hypothesize that uncoupling of oxidative phosphorylation in skeletal muscle mitochondria contributes to increased metabolic rate in burn survivors.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT(+)) men and five BAT-negative (BAT(-)) men under thermoneutral conditions and after prolonged (5-8 h) cold exposure (CE).

View Article and Find Full Text PDF