Publications by authors named "Tony A Navas"

Multiple myeloma (MM) is a clonal plasma cell malignancy, which is currently incurable. Therefore, new mono- or combined therapy treatment regimens in the early and advanced phases of MM are urgently needed to combat this disease. Recently, p38 mitogen-activated protein kinase (MAPK) has been implicated as playing an important role in MM.

View Article and Find Full Text PDF

MDS is characterized by ineffective hematopoiesis that leads to peripheral cytopenias. Development of effective treatments has been impeded by limited insight into pathogenic pathways governing dysplastic growth of hematopoietic progenitors. We demonstrate that smad2, a downstream mediator of transforming growth factor-beta (TGF-beta) receptor I kinase (TBRI) activation, is constitutively activated in MDS bone marrow (BM) precursors and is overexpressed in gene expression profiles of MDS CD34(+) cells, providing direct evidence of overactivation of TGF-beta pathway in this disease.

View Article and Find Full Text PDF

The myelodysplastic syndromes (MDSs) are collections of heterogeneous hematologic diseases characterized by refractory cytopenias as a result of ineffective hematopoiesis. Development of effective treatments has been impeded by limited insights into any unifying pathogenic pathways. We provide evidence that the p38 MAP kinase is constitutively activated or phosphorylated in MDS bone marrows.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) and heat shock proteins (HSPs) are ubiquitous proteins that function within T cells in both normal and stress-related pathophysiological states, including type 1 diabetes. The nonobese diabetic (NOD) mouse spontaneously develops T cell-mediated autoimmune pancreatic beta cell destruction that is similar to type 1 diabetes in humans. Because p38 MAPKs have been shown to modulate T cell function, we studied the effects of a p38alpha MAPK-selective inhibitor, indole-5-carboxamide (SD-169), on the development and progression of type 1 diabetes in the NOD mouse.

View Article and Find Full Text PDF

The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38alpha MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) play a fundamental role in the recognition of bacteria and viruses. TLR3 is activated by viral dsRNA and polyinosinic-polycytidylic acid (poly(I:C)), a synthetic mimetic of viral RNA. We show that NK cells, known for their capacity to eliminate virally infected cells, express TLR3 and up-regulate TLR3 mRNA upon poly(I:C) stimulation.

View Article and Find Full Text PDF