In this work, tunable MEMS capacitors are realized using a vertically grown carbon nanotube array. The vertical CNT array forms an effective CNT membrane, which can be electrostatically actuated like the conventional metal plates used in MEMS capacitors. The CNT membrane is grown on titanium nitride metal lines, with a Al/Fe bi-layer as buffer layer and catalyst material respectively, using chemical vapor deposition process.
View Article and Find Full Text PDFThe electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units.
View Article and Find Full Text PDF