For some decades now, theories on learning methodologies have advocated collaborative learning due to its good results in terms of effectiveness and learning types and its promotion of educational and social values. This means that teachers need to be able to apply different criteria when forming heterogeneous groups of students and to use automated techniques to assist them. In this study, we have created an approach based on complex network theory to design an algorithm called Minimum Entropy Collaborative Groupings (MECG) in order to form these heterogeneous groups more effectively.
View Article and Find Full Text PDFA principled approach to understand network structures is to formulate generative models. Given a collection of models, however, an outstanding key task is to determine which one provides a more accurate description of the network at hand, discounting statistical fluctuations. This problem can be approached using two principled criteria that at first may seem equivalent: selecting the most plausible model in terms of its posterior probability; or selecting the model with the highest predictive performance in terms of identifying missing links.
View Article and Find Full Text PDFCraniosynostosis, the premature fusion of cranial bones, affects the correct development of the skull producing morphological malformations in newborns. To assess the susceptibility of each craniofacial articulation to close prematurely, we used a network model of the skull to quantify the link reliability (an index based on stochastic block models and Bayesian inference) of each articulation. We show that, of the 93 human skull articulations at birth, the few articulations that are associated with non-syndromic craniosynostosis conditions have statistically significant lower reliability scores than the others.
View Article and Find Full Text PDF