Publications by authors named "Toni U Wagner"

Bone Morphogenetic Proteins (BMPs) are important growth factors that regulate many cellular processes. During embryogenesis they act as morphogens and play a critical role during organ development. They influence cell fates via concentration-gradients in the embryos where cells transduce this extracellular information into gene expression profiles and cell fate decisions.

View Article and Find Full Text PDF

Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons.

View Article and Find Full Text PDF

The generation of defined somatic cell types from pluripotent stem cells represents a promising system for many applications for regenerative therapy or developmental studies. Certain key developmental genes have been shown to be able to influence the fate determination of differentiating stem cells suggesting an alternative differentiation strategy to conventional medium-based methods. Here, we present a system allowing controlled, directed differentiation of embryonic stem cells (ESCs) solely by ectopic expression of single genes.

View Article and Find Full Text PDF

Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists.

View Article and Find Full Text PDF

Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196.

View Article and Find Full Text PDF

In the initial phase of development of fish embryos, a prominent and critical event is the midblastula transition (MBT). Before MBT cell cycle is rapid, highly synchronous and zygotic gene transcription is turned off. Only during MBT the cell cycle desynchronizes and transcription is activated.

View Article and Find Full Text PDF

The capability to form all cell types of the body is a unique feature of stem cells. However, many questions remain concerning the mechanisms regulating differentiation potential. The derivation of spermatogonial cell lines (SGs) from mouse and human, which can differentiate across germ-layer borders, suggested male germ cells as a potential stem cell source in addition to embryonic stem cells.

View Article and Find Full Text PDF

Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 microm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo.

View Article and Find Full Text PDF

LIN9 has been described as a regulator of G(1)/S and G(2)/M progression of the cell cycle in invertebrates and human cell lines. To elucidate the in vivo function of LIN9 during vertebrate development, we took advantage of the teleost zebrafish (Danio rerio). By means of antisense morpholinos we show here that Lin9-depleted embryonic cells accumulate in mitosis.

View Article and Find Full Text PDF

Differential gene expression largely accounts for the coordinated manifestation of the genetic programme underlying embryonic development and cell differentiation. The 3' untranslated region (3'-UTR) of eukaryotic genes can contain motifs involved in regulation of gene expression at the post-transcriptional level. In the 3'-UTR of dmrt1, a key gene that functions in gonad development and differentiation, an 11-bp protein-binding motif was identified that mediates gonad-specific mRNA localization during embryonic and larval development of fish.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP) signals play key roles throughout embryology, from the earliest patterning events, via tissue specification, through organ development and again in germ cell differentiation. While both input and the transducer molecules are rather well studied, the final outcome of a BMP signal is basically unpredictable and differs enormously between previously studied cell types. As already suggested by their name, BMPs exhibit most of their (known) functions on stem cells and precursor cells, usually driving them into various types of differentiation or death.

View Article and Find Full Text PDF

Congenital heart defects affect almost 1% of human newborns. Recently, mutations in Notch ligands and receptors have been found to cause a variety of heart defects in rodents and humans. However, the molecular effects downstream of Notch are still poorly understood.

View Article and Find Full Text PDF