Anti-disialoganglioside (GD2) antibody therapy has provided clinical benefit to patients with neuroblastoma however efficacy is likely impaired by the immunosuppressive tumor microenvironment. We have previously defined a link between intratumoral copper levels and immune evasion. Here, we report that adjuvant copper chelation potentiates anti-GD2 antibody therapy to confer durable tumor control in immunocompetent models of neuroblastoma.
View Article and Find Full Text PDFCopper is a vital micronutrient involved in many biological processes and is an essential component of tumour cell growth and migration. Copper influences tumour growth through a process called cuproplasia, defined as abnormal copper-dependent cell-growth and proliferation. Copper-chelation therapy targeting this process has demonstrated efficacy in several clinical trials against cancer.
View Article and Find Full Text PDFMetformin, the first line pharmacotherapy for type 2 diabetes has demonstrated favourable effects in prostate cancer (PCa) across a range of studies evaluating PCa patient outcomes amongst metformin users. However, a lack of rigorously conducted prospective studies has stalled clinical use in this setting. Despite multiple studies evaluating the mechanisms underpinning antitumour effects of metformin in PCa, to date, no reviews have compared these findings.
View Article and Find Full Text PDFGlioblastoma (GBM) is a malignant brain tumour with a dismal prognosis, despite best treatment by surgical resection, radiation therapy (RT) and chemotherapy with temozolomide (TMZ). Nanoparticle (NP) therapy is an emerging consideration due to the ability of NPs to be formulated and cross the blood brain barrier. Lanthanum oxide (LaO) NPs are therapeutically advantageous due to the unique chemical properties of lanthanum making it cytotoxic to cancers, and able to enhance existing anti-cancer treatments.
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
June 2019
Effective treatments that extend survival of malignant brain tumor glioblastoma (GBM) have not changed in more than a decade; however, there exists a minority patient group (<5%) whose survival is longer than 3 yr. We herein present a case report of a long-term surviving 51-yr-old female diagnosed with a unmethylated GBM. The patient was progression-free for 23 mo.
View Article and Find Full Text PDFMalignant glioma is a devastating disease affecting both adults and children with limited treatment strategies. Pre-clinical animal studies are critical to the development and planning of novel treatment designs for human clinical trials. Topoisomerases has been a target of interest in the treatment of high grade gliomas, such as glioblastoma, in the past years.
View Article and Find Full Text PDFBackground: The O -methylguanine methyltransferase (MGMT) gene is frequently unmethylated in patients with glioblastoma (GBM), rendering them non-responsive to the standard treatment regime of surgery followed by concurrent radiotherapy (RT) and temozolomide. Here, we investigate the efficacy of adding a PARP inhibitor, veliparib, to radiotherapy to treat MGMT unmethylated GBM.
Methods: The inhibition of PARP with veliparib (ABT-888), a potent and orally bioavailable inhibitor in combination with RT was tested on a panel of patient derived cell lines (PDCLs) and patient-derived xenografts (PDX) models generated from GBM patients with MGMT unmethylated tumors.
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively.
View Article and Find Full Text PDFCancer is the number one cause of death in Australia with colorectal cancer being the second most common cancer type. The translation of cancer research into clinical practice is hindered by the lack of integration of heterogeneous and autonomous data from various data sources. Integration of heterogeneous data can offer researchers a comprehensive source for biospecimen identification, hypothesis formulation, hypothesis validation, cohort discovery and biomarker discovery.
View Article and Find Full Text PDFMetastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive malignant brain tumor in adults. Improvements in the treatment of GBM have remained static since the advent of the standard therapy which includes radiation with concurrent and adjuvant temozolomide treatment. Developing treatment and diagnostic or companion biomarker combinations is transforming the way we treat numerous cancers.
View Article and Find Full Text PDFThe survival trends for glioblastoma (GBM) patients have remained largely static, reflecting a lack of improvement in the therapeutic options for patients. Less than 5 % of newly diagnosed GBM survives more than 5 years. Tumor relapse is nearly universal and the majority of patients do not respond to further systemic therapy.
View Article and Find Full Text PDF