Color can be used to group similar elements, and ensemble percepts of color can be formed for such groups. In real-life settings, however, elements of similar color are often spatially interspersed among other elements and seen against a background. Forming an ensemble percept of these elements would require the segmentation of the correct color signals for integration.
View Article and Find Full Text PDFPerception is biased by stimulus history. Both long-term effects such as the central-tendency bias (CTB) and short-term effects such as serial dependence (SD) have been described, but research into the two has remained largely separate. The sources of these effects, however, are highly correlated in stimulus statistics, which can result in a misinterpretation of experimental data.
View Article and Find Full Text PDFComplex visual processing involved in perceiving the object materials can be better elucidated by taking a variety of research approaches. Sharing stimulus and response data is an effective strategy to make the results of different studies directly comparable and can assist researchers with different backgrounds to jump into the field. Here, we constructed a database containing several sets of material images annotated with visual discrimination performance.
View Article and Find Full Text PDFColor serves both to segment a scene into objects and background and to identify objects. Although objects and surfaces usually contain multiple colors, humans can readily extract a representative color description, for instance, that tomatoes are red and bananas yellow. The study of color discrimination and identification has a long history, yet we know little about the formation of summary representations of multicolored stimuli.
View Article and Find Full Text PDFA key challenge for the visual system is to extract constant object properties from incoming sensory information. This information is ambiguous because the same sensory signal can arise from many combinations of object properties and viewing conditions and noisy because of the variability in sensory encoding. The competing accounts for perceptual constancy of surface lightness fall into two classes of model: One derives lightness estimates from border contrasts, and another explicitly infers surface reflectance.
View Article and Find Full Text PDFFinding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3].
View Article and Find Full Text PDFThe visual system can use various cues to segment the visual scene into figure and background. We studied how human observers combine two of these cues, texture and color, in visual segmentation. In our task, the observers identified the orientation of an edge that was defined by a texture difference, a color difference, or both (cue combination).
View Article and Find Full Text PDFThe strength of contrast masking depends not only on spatial but also on temporal parameters. In a previous study (T. P.
View Article and Find Full Text PDFIn crowding, neighboring elements impair the perception of a peripherally presented target. Crowding is often regarded to be a consequence of spatial pooling of information that leads to the perception of textural wholes. We studied the effects of stimulus configuration on crowding using Gabor stimuli.
View Article and Find Full Text PDFNeural and perceptual responses to a visual stimulus can be suppressed by the addition of both spatially overlapping and spatially adjacent contextual stimuli. We investigated the temporal characteristics of these suppressive interactions in psychophysical contrast masking experiments using Gabor and grating stimuli with a spatial frequency of 4 cycles per degree. We found that the time course of masking strongly depended on mask orientation.
View Article and Find Full Text PDF