Scope: The mechanisms of oleanolic acid (OA) regulating hepatic sterol regulatory element-binding protein (SREBP) 1c/stearoyl-CoA desaturase (SCD) 1 pathway to ameliorate fructose-induced hepatosteatosis are investigated.
Methods And Results: Rats treated with 10% w/v fructose solution are co-administered by OA for 5 weeks, and then sacrifice after fasting for 14 h. OA reverses the fructose-induced increase in hepatic triglyceride (TG) content and downregulates Scd1 mRNA expression.
Ageing often results in insulin resistance (IR) and chronic inflammation, and adipose is one of the tissues in which inflammation and IR occur earliest during this process. The present study investigated the effect and underlying mechanisms of ursolic acid (UA) on adipose IR and inflammation in ageing rats. Specific pathogen-free male Sprague-Dawley rats were randomly divided into 4 groups: i) Young normal (young); ii) untreated ageing (aged); and groups supplemented with UA either iii) low-UA 10 mg/kg (UA-L) or iv) high-50 mg/kg (UA-H).
View Article and Find Full Text PDFApple pomace and rosemary (AR) have been reported to contain rich bioactive molecules, which have numerous metabolic effects. Our preliminary work revealed that AR ameliorated fructose-induced insulin resistance in rats by modulating sarcolemmal CD36 and glucose transporter-4. The present study aimed to further examine how AR improves metabolic disorders by investigating the effect of AR on hepatic steatosis induced by fructose overconsumption.
View Article and Find Full Text PDF