IEEE Trans Neural Netw Learn Syst
January 2024
Hyperspectral change detection, which provides abundant information on land cover changes in the Earth's surface, has become one of the most crucial tasks in remote sensing. Recently, deep-learning-based change detection methods have shown remarkable performance, but the acquirement of labeled data is extremely expensive and time-consuming. It is intuitive to learn changes from the scene with sufficient labeled data and adapting them into an unlabeled new scene.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2023
Well-known deep learning (DL) is widely used in fusion based hyperspectral image super-resolution (HS-SR). However, DL-based HS-SR models have been designed mostly using off-the-shelf components from current deep learning toolkits, which lead to two inherent challenges: i) they have largely ignored the prior information contained in the observed images, which may cause the output of the network to deviate from the general prior configuration; ii) they are not specifically designed for HS-SR, making it hard to intuitively understand its implementation mechanism and therefore uninterpretable. In this paper, we propose a noise prior knowledge informed Bayesian inference network for HS-SR.
View Article and Find Full Text PDFBackground/aims: Enteroenteric intussusception in Peutz-Jeghers syndrome (EI-PJS) is traditionally treated by surgery. However, enteroscopic treatment is a minimally invasive approach worth attempting. We aimed to develop a risk scoring system to facilitate decision-making in the treatment of EI-PJS.
View Article and Find Full Text PDFHyperspectral (HS) pansharpening, which fuses the HS image with a high spatial resolution panchromatic (PAN) image, provides a good solution to overcome the limitation of HS imaging devices. However, most existing convolutional neural network (CNN)-based methods are hard to understand and lack interpretability due to the black-box design. In this Letter, we propose a multi-level spatial details cross-extraction and injection network (MSCIN) for HS pansharpening, which introduces the mature multi-resolution analysis (MRA) technology to the neural network.
View Article and Find Full Text PDF