Rapidly expanding biopharmaceutical market demands more cost-effective platforms to produce protein therapeutics. To this end, novel approaches, such as perfusion culture or concentrated fed-batch, have been explored for higher yields and lower manufacturing costs. Although these new approaches produced promising results, but their wide-spread use in the industry is still limited.
View Article and Find Full Text PDFSpin-polarized light-emitting diodes (spin-LEDs) convert the electronic spin information to photon circular polarization, offering potential applications including spin amplification, optical communications, and advanced imaging. The conventional control of the emitted light's circular polarization requires a change in the external magnetic field, limiting the operation conditions of spin-LEDs. Here, we demonstrate an atomically thin spin-LED device based on a heterostructure of a monolayer WSe and a few-layer antiferromagnetic CrI, separated by a thin hBN tunneling barrier.
View Article and Find Full Text PDFConductive hydrogels have gained a great deal of interest in the flexible electronics industry because of their remarkable inherent properties. However, a significant challenge remains for balancing hydrogel's conductivity, self-healing, and strength properties. Herein, double network ionic hydrogels were fabricated by concurrently introducing borax into dicarboxylic cellulose nanofiber (DCNFs) and polyacrylamide (PAM) hydrogels.
View Article and Find Full Text PDFGraphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported.
View Article and Find Full Text PDFRapid expansion of biopharmaceutical market calls for more efficient and reliable platforms to culture mammalian cells on a large scale. Stirred-tank bioreactors have been widely used for large-scale cell culture. However, it requires months of trials and errors to optimize culture conditions for each cell line.
View Article and Find Full Text PDFThe electrical and optical properties of twisted bilayer graphene (tBLG) depend sensitively on the twist angle. To study the angle dependent properties of the tBLG, currently it is required fabrication of a large number of samples with systematically varied twist angles. Here, we demonstrate the construction of in-situ twistable bilayer graphene, in which the twist angle of the two graphene monolayers can be in-situ tuned continuously in a large range with high precision.
View Article and Find Full Text PDFMuch of the richness and variety of physics today are based on coupling phenomena where multiple interacting systems hybridize into new ones with completely distinct attributes. Recent development in building van der Waals (vdWs) heterostructures from different 2D materials provides exciting possibilities in realizing novel coupling phenomena in a designable manner. Here, with a graphene/hBN/graphene heterostructure, we report near-field infrared nano-imaging of plasmon-plasmon coupling in two vertically separated graphene layers.
View Article and Find Full Text PDF