Publications by authors named "Tongxu Gu"

Single-nanoparticle counting (SNPC) based on fluorescent tag (FT) stands out for its capacity to achieve amplification-free and sensitive detection of biomarkers. The stability and luminescence of FT are important to the sensitivity and reliability of SPNC. In this work, we developed novel perovskite/silica nanocomposites by in-situ nanoconfined growth of CsPbBr nanocrystals inside mesoporous structure of silica nanoparticles.

View Article and Find Full Text PDF

All-inorganic lead halide perovskite nanocrystals exhibiting bright luminescence have great potential as fluorescence elements for optical encoding. However, their limited stability in water hinders the application in biosensing. In this study, novel optical encoded microbeads based on CsPbX (X = Cl, Br) nanocrystals are developed and applied in bead-based suspension arrays for the first time.

View Article and Find Full Text PDF

Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs.

View Article and Find Full Text PDF

We have developed a photoluminescent membrane for microRNA detection, consisting of chemically modified mesoporous silica nanoparticles (CaF2:Yb/Ho@MSNs) attached, via single stranded DNA probes, to flexible polyurethane fibres coated with graphene oxide (GO). By detecting the release of the luminescent nanoparticles resulting from complementary co-hybridization between target miRNA sequences and the DNA probe, accurate measurements of the miRNA concentration at high sensitivity levels can be obtained. The constructs therefore offer a route to rapid detection and the potential for early cancer diagnosis.

View Article and Find Full Text PDF

Electrochemical therapy (EChT), by inserting electrodes directly into tumors to kill cancer cells under direct current (DC), is clinically used in several countries. In EChT, the drastic pH variation nearby the inserted electrodes is the main cause of tumor damage. However, its limited effective area and complex electrode configuration have hindered the clinical application of EChT in treating diverse tumor types.

View Article and Find Full Text PDF

The efficacy of the conventional photodynamic therapy (PDT) is markedly suppressed by limited penetration depth of light in biological tissues and oxygen depletion in the hypoxic tumor microenvironment. Herein, mesoporous silica nanospheres with fine CaF:Yb,Er upconversion nanocrystals entrapped in their porous structure are synthesized via a thermal decomposition method. After subsequently coating with a thin MnO layer and loading with a photosensitizer, Chlorin e6 (Ce6), a new type of nanoscale PDT platform is obtained.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a key role in regulating gene expression but can be associated with abnormalities linked to carcinogenesis and tumor progression. Hence there is increasing interest in developing methods to detect these non-coding RNA molecules in the human circulation system. Here, a novel FRET miRNA-195 targeting biosensor, based on silica nanofibers incorporated with rare earth-doped calcium fluoride particles (CaF:Yb,Ho@SiO) and gold nanoparticles (AuNPs), is reported.

View Article and Find Full Text PDF

Daunting challenges in investigating the controlled release of drugs in complicated intracellular microenvironments demand the development of stimuli-responsive drug delivery systems. Here, a nanoparticle system, CaF:Tm,Yb@mSiO, made of a mesoporous silica (mSiO) nanosphere with CaF:Tm,Yb upconversion nanoparticles (UCNPs) is developed, filling its mesopores and with its surface-modified with polyacrylic acid for binding the anticancer drug molecules (doxorubicin, DOX). The unique design of CaF:Tm,Yb@mSiO enables us to trigger the drug release by two mechanisms.

View Article and Find Full Text PDF

Electrohydrodynamic atomization (EHDA) enabling platform technologies have gathered significant momentum over the last two decades. Utilisation of the underpinning jetting process in tandem with desired materials (including polymers, ceramics, metals and even naturally occurring compounds such as peptides, DNA and cells) provides the basis for novel engineered therapies. Through EHDA processes, the generation of a variety of nano-meter and micro-meter scaled structures with control on surface and encapsulation features is attainable in a single step.

View Article and Find Full Text PDF