J Med Chem
June 2024
Using a convergent synthetic route to enable multiple points of diversity, a series of glucocorticoid receptor modulators (GRM) were profiled for potency, selectivity, and drug-like properties . Despite covering a large range of diversity, profiling the nonconjugated small molecule was suboptimal and they were conjugated to a mouse antitumor necrosis factor (TNF) antibody using the MP-Ala-Ala linker. Screening of the resulting antibody drug conjugates (ADCs) provided a better assessment of efficacy and physical properties, reinforcing the need to conduct structure-activity relationship studies on the complete ADC.
View Article and Find Full Text PDFOur HCV research program investigated novel 2'-dihalogenated nucleoside HCV polymerase inhibitors and identified compound 1, a 5'-phosphoramidate prodrug of 2'-deoxy-2'-α-bromo-β-chloro uridine. Although 1 had a favorable in vitro activity profile in HCV replicons, oral dosing in dog resulted in low levels of the active 5'-triphosphate (TP) in liver. Metabolism studies using human hepatocytes provided a simple assay for screening alternative phosphoramidate prodrug analogs.
View Article and Find Full Text PDFHepatitis C virus (HCV) nucleoside inhibitors have been a key focus of nearly 2 decades of HCV drug research due to a high barrier to drug resistance and pan-genotypic activity profile provided by molecules in this drug class. Our investigations focused on several potent 2'-halogenated uridine-based HCV polymerase inhibitors, resulting in the discovery of novel 2'-deoxy-2'-dihalo-uridine analogs that are potent inhibitors in replicon assays for all genotypes. Further studies to improve in vivo performance of these nucleoside inhibitors identified aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrugs 18a and 18c, which provide high levels of the active triphosphate in dog liver.
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
July 2012
Objective: To study the risk factors and interaction of nasal septal perforation (NSP) in rats.
Method: Animals (n=120) that underwent unilateral nasal obstruction using Merocel nasal packing or gelfoam with/without standard staphylococcus aureus inoculation were observed for the formation of NSP at 2, 3, 5, and 7 days after operation by endoscope system. Following sacrifice at 7 days, the obtained nasal secretions were prepared for bacterial culture.
Synthesis and biological evaluation of a novel class of substituted N-benzyl-1-(2,3-dichlorophenyl)-1H-tetrazol-5-amine derivatives resulted in the identification of potent P2X(7) antagonists. These compounds were assayed for activity at both the human and rat P2X(7) receptors. On the benzyl moiety, a variety of functional groups were tolerated, including both electron-withdrawing and electron-donating substituents.
View Article and Find Full Text PDFCompound 7 was identified as a potent (IC50 = 14 nM), selective, and orally bioavailable (F = 70% in mouse) inhibitor of protein kinase B/Akt. While promising efficacy was observed in vivo, this compound showed effects on depolarization of Purkinje fibers in an in vitro assay and CV hypotension in vivo. Guided by an X-ray structure of 7 bound to protein kinase A, which has 80% homology with Akt in the kinase domain, our efforts have focused on structure-activity relationship (SAR) studies of the phenyl moiety, in an attempt to address the cardiovascular liability and further improve the Akt potency.
View Article and Find Full Text PDFA series of heteroaryl-pyridine containing inhibitors of Akt are reported. The synthesis and structure-activity relationships are discussed, leading to the discovery of a indazole-pyridine analogue (K(i)=0.16 nM).
View Article and Find Full Text PDFBased on lead compounds 2 and 3 a series of 3,5-disubstituted pyridines have been designed and evaluated for inhibition of AKT/PKB. Modifications at the 3 position of the pyridine ring led to a number of potent compounds with improved physical properties, resulting in the identification of 11g as a promising, orally active Akt inhibitor. The synthesis, structure-activity relationship studies, and pharmacokinetic data are presented in this paper.
View Article and Find Full Text PDFBioorg Med Chem Lett
April 2006
Structure-based design and synthesis of the 3,4'-bispyridinylethylene series led to the discovery of 3-isoquinolinylpyridine 13a as a potent PKB/Akt inhibitor with an IC(50) of 1.3nM against Akt1. Compound 13a shows excellent selectivity against distinct families of kinases such as tyrosine kinases and CAMK, and displays poor to marginal selectivity against closely related kinases in the AGC and CMGC families.
View Article and Find Full Text PDFA novel series of Akt/PKB inhibitors derived from a screening lead (1) has been prepared. The novel trans-3,4'-bispyridinylethylenes described herein are potent inhibitors of Akt/PKB with IC(50) values in the low double-digit nanomolar range against Akt1. Compound 2q shows excellent selectivity against distinct families of kinases such as tyrosine kinases and CAMK, and displays poor to modest selectivity against closely related kinases in the AGC and CMGC families.
View Article and Find Full Text PDFThe Akt kinases are central nodes in signal transduction pathways that are important for cellular transformation and tumor progression. We report the development of a series of potent and selective indazole-pyridine based Akt inhibitors. These compounds, exemplified by A-443654 (K(i) = 160 pmol/L versus Akt1), inhibit Akt-dependent signal transduction in cells and in vivo in a dose-responsive manner.
View Article and Find Full Text PDFA series of analogs of tipifarnib (1) has been synthesized as inhibitors of FTase by substituting the benzimidazolones and indoles for the 2-quinolone of tipifarnib. The novel benzimidazolones are potent and selective FTase inhibitors (FTIs) with IC(50) values of the best compounds close to that of tipifarnib. The current series demonstrate good cellular activity as measured in their inhibiting the Ras processing in NIH-3T3 cells, with compounds 2c and 2f displaying EC(50) values of 18 and 22nM, respectively.
View Article and Find Full Text PDFA series of imidazole-containing methyl ethers (4-5) have been designed and synthesized as potent and selective farnesyltransferase inhibitors (FTIs) by transposition of the D-ring to the methyl group on the imidazole of the previously reported FTIs 3. Several compounds such as 4h and 5b demonstrate superior enzymatic activity to the current benchmark compound tipifarnib (1) with IC(50) values in the lower subnanomolar range, while maintaining excellent cellular activity comparable to tipifarnib. The compounds are characterized as being simple, easier to make, and possess no chiral center involved.
View Article and Find Full Text PDFAs a part of our efforts to identify potent inhibitors of farnesyltransferase (FTase), modification of the structure of tipifarnib through structure-based design was undertaken by replacing the 2-quinolones with 4-quinolones and pyridones, and subsequent relocation of the D-ring to the N-methyl group on the imidazole ring. This study has yielded a novel series of potent and selective FTase inhibitors. The X-ray structure of tipifarnib (1) in complex with FTase was described.
View Article and Find Full Text PDFA pyridyl moiety was introduced into a previously developed series of farnesyltransferase inhibitors containing imidazole and cyanophenyl (such as 4), resulting in potent inhibitors with improved pharmacokinetics.
View Article and Find Full Text PDF