Unlike the known aggregation-caused quenching (ACQ) that the enhancement of π-π interactions in rigid organic molecules usually decreases the luminescent emission, here we show that an intermolecular "head-to-head" π-π interaction in the phenanthrene crystal, forming the so-called "transannular effect", could result in a higher degree of electron delocalization and thus photoluminescent emission enhancement. Such a transannular effect is molecular configuration and stacking dependent, which is absent in the isomers of phenanthrene but can be realized again in the designed phenanthrene-based cocrystals. The transannular effect becomes more significant upon compression and causes anomalous piezoluminescent enhancement in the crystals.
View Article and Find Full Text PDFA novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping of THT molecules into TCNB-perylene cocrystals results in the formation of a weak but pressure-enhanced emission center in the material at ambient pressure. Upon compression, the emissive band from the undoped component TCNB-perylene undergoes a normal red shift and emission quenching, while the weak emission center shows an anomalous blue shift from 615 nm to 574 nm and a giant luminescence enhancement up to 16 GPa.
View Article and Find Full Text PDF