Publications by authors named "Tonge D"

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development.

View Article and Find Full Text PDF

Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression.

View Article and Find Full Text PDF

The clarification of drinking water leads to the production of large quantities of water treatment residuals (WTRs). DNA was extracted from six WTR samples collected from water treatment plants within the UK to compare their bacterial communities and examine whether factors such as coagulant usage (aluminium versus iron salt), the type of water source (reservoir or river), or leachable chemical composition influence these communities. Bacterial 16S variable region 4 (V4) was amplified and sequenced using Illumina MiSeq sequencing.

View Article and Find Full Text PDF

In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets.

View Article and Find Full Text PDF

Autoimmune conditions, such as rheumatoid arthritis, are characterised by a loss of immune tolerance, whereby the immune cells attack self-antigens causing pain and inflammation. These conditions can be brought into remission using pharmaceutical treatments, but often have adverse side effects and some patients do not respond favourably to them. Human umbilical cord mesenchymal stromal cells (UCMSCs) present a promising alternative therapeutic due to their innate anti-inflammatory properties which can be strengthened using pro-inflammatory conditions.

View Article and Find Full Text PDF

Bangladesh reported the highest number of annual deaths (n = 281) related to dengue virus infection in 2022 since the virus reappeared in the country in 2000. Earlier studies showed that >92% of the annual cases occurred between the months of August and September. The 2022 outbreak is characterized by late onset of dengue cases with unusually higher deaths in colder months, that is, October-December.

View Article and Find Full Text PDF

The serine/threonine protein phosphatase 4 holoenzyme consists of a PP4 catalytic subunit (PP4c), which interacts with four different regulatory subunits. Previous studies have shown that PP4c acts as a tumour suppressor. Emerging evidence suggests that the protein phosphatase 4 regulatory subunits might regulate cell fate independently of PP4c.

View Article and Find Full Text PDF

Identification of cell fate-controlling lncRNAs is essential to our understanding of molecular cell biology. Here we present a human genome-scale forward-genetics approach for the identification of lncRNAs based on gene function. This approach can identify genes that play a causal role, and immediately distinguish them from those that are differentially expressed but do not affect cell function.

View Article and Find Full Text PDF

Rheumatoid Arthritis (RA) has been increasingly associated with perturbations to the microbial communities that reside in and on the body (the microbiome), in both human and animal studies. To date, such studies have mainly focused on the microbial communities that inhabit the gut and oral cavity. Mounting evidence suggests that microbial DNA can be detected in the blood circulation using a range of molecular methods.

View Article and Find Full Text PDF

Methods: The presence and identity of bacterial and fungal DNA in the synovial fluid of rheumatoid arthritis (RA) patients and healthy control subjects was investigated through amplification and sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer region 2 respectively. Synovial fluid concentrations of the cytokines IL-6, IL-17A, IL22 and IL-23 were determined by ELISA.

Results: Bacterial 16S rRNA genes were detected in 87.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory disorder of the airways. Disease presentation varies greatly in terms of cause, development, severity, and response to medication, and thus the condition has been subdivided into a number of asthma phenotypes. There is still an unmet need for the identification of phenotype-specific markers and accompanying molecular tools that facilitate the classification of asthma phenotype.

View Article and Find Full Text PDF

Myocardial Infarction Associated Transcript (MIAT) is a subnuclear lncRNA that interferes with alternative splicing and is associated with increased risk of various heart conditions and nervous system tumours. The current study aims to elucidate the role of MIAT in cell survival, apoptosis and migration in neuroblastoma and glioblastoma multiforme. To this end, MIAT was silenced by MIAT-specific siRNAs in neuroblastoma and glioblastoma cell lines, and RNA sequencing together with a series of functional assays were performed.

View Article and Find Full Text PDF

The term microbiome describes the genetic material encoding the various microbial populations that inhabit our body. Whilst colonization of various body niches (e.g.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are short non-protein-coding RNA species that have a regulatory function in modulating protein translation and degradation of specific mRNAs. MicroRNAs are estimated to target approximately 60% of all human mRNAs and are associated with the regulation of all physiological processes. Similar to many messenger RNAs (mRNA), miRNAs exhibit marked tissue specificity, and appear to be dysregulated in response to specific pathological conditions.

View Article and Find Full Text PDF

Next generation sequencing technology has revolutionised microbiology by allowing concurrent analysis of whole microbial communities. Here we developed and verified similar methods for the analysis of fungal communities using a proton release sequencing platform with the ability to sequence reads of up to 400 bp in length at significant depth. This read length permits the sequencing of amplicons from commonly used fungal identification regions and thereby taxonomic classification.

View Article and Find Full Text PDF

Osteoarthritis (OA) is an age-related condition and the leading cause of pain, disability and shortening of adult working life in the UK. The incidence of OA increases with age, with 25% of the over 50s population having OA of the knee. Despite promising preclinical data covering various molecule classes, there is regrettably at present no approved disease-modifying OA drugs (DMOADs).

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most common joint disorder in the world and represents the leading cause of pain and disability in the elderly population. Advancing age remains the single greatest risk factor for OA. Several studies have characterised disease development in the guinea pig ageing model of OA in terms of its joint histopathology and inflammatory cytokine profile.

View Article and Find Full Text PDF

Background: Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes involved in extracellular matrix (ECM) homeostasis. MMPs have been an attractive pharmacological target for a number of indications. However, development has been hampered by the propensity of compounds targeting these enzymes to cause connective-tissue pathologies.

View Article and Find Full Text PDF

We have previously demonstrated that the growth of peripheral nervous system axons is strongly attracted towards limb buds and skin explants in vitro. Here, we show that directed axonal growth towards skin explants of Xenopus laevis in matrigel is associated with expression of matrix metalloproteinase (MMP)-18 and also other MMPs, and that this long-range neurotropic activity is inhibited by the broad-spectrum MMP inhibitors BB-94 and GM6001. We also show that forced expression of MMP-18 in COS-7 cell aggregates enhances axonal growth from Xenopus dorsal root ganglia explants.

View Article and Find Full Text PDF

The molecular basis of axonal regeneration of central nervous system (CNS) neurons remains to be fully elucidated. In part, this is due to the difficulty in maintaining CNS neurons in vitro. Here, we show that dissociated neurons from the cerebral cortex and hippocampus of adult mice may be maintained in culture for up to 9 days in defined medium without added growth factors.

View Article and Find Full Text PDF

Background: Several chronic conditions leading to skeletal muscle dysfunction are known to be associated with changes in the expression of myosin heavy chain (MHC) isoforms at both the mRNA and protein level. Many of these conditions are modelled, pre-clinically, in the guinea pig due to similar disease onset and progression to the human condition, and their generally well-characterised anatomy. MHC composition is amenable to determination by protein and mRNA based methodologies, the latter quantifying the expression of MHC isoform-specific gene transcripts allowing the detection of earlier, and more subtle changes.

View Article and Find Full Text PDF

Laminin-121, previously referred as to laminin-3, was expressed recombinantly in human embryonic kidney (HEK) 293 cells by triple transfection of full-length cDNAs encoding mouse laminin α1, β2 and γ1 chains. The recombinant laminin-121 was purified using Heparin-Sepharose followed by molecular sieve chromatography and shown to be correctly folded by electron microscopy and circular dichroism (CD). The CD spectra of recombinant laminin-121 were very similar to those of laminin-111 isolated from Engelbreth-Holm-Swarm tumor (EHS-laminin) but its T(m) value was smaller than EHS-laminin and recombinant lamnin-111 suggesting that the replacement of the β chain reduced the stability of the coiled-coil structure of laminin-121.

View Article and Find Full Text PDF

Objective: To examine whether beta2-adrenergic agonist-induced hypertrophy of the quadriceps skeletal muscle can modulate the severity of osteoarthritis (OA) in the rodent meniscectomy (MNX) model.

Methods: Male Lewis rats were subcutaneously administered with 1.5 mg/kg/day clenbuterol hydrochloride (n=15) or saline vehicle (n=20) for 14 days.

View Article and Find Full Text PDF

Axonal regeneration is enhanced by the prior ;conditioning' of peripheral nerve lesions. Here we show that Xenopus dorsal root ganglia (DRG) with attached peripheral nerves (PN-DRG) can be conditioned in vitro, thereafter showing enhanced neurotrophin-induced axonal growth similar to preparations conditioned by axotomy in vivo. Actinomycin D inhibits axonal outgrowth from freshly dissected PN-DRG, but not from conditioned preparations.

View Article and Find Full Text PDF

The dual-function phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is the second most frequently mutated gene in human cancers. PTEN counteracts the functions of many growth factors, the most prevalent of which is insulin-like growth factor II (IGF-II). PTEN expression is stimulated by IGF-II forming a feedback loop.

View Article and Find Full Text PDF