Publications by authors named "Tong-Sheng Chen"

Objective: Caerin is a new peptide with tumour toxicity and its uptake by tumour cells is independent of the sodium iodide symporter (NIS). Thyroid cancer is the most common cancers of endocrine malignancy. Radioiodine (I)-refractory thyroid cancer is the most lethal subtype of the thyroid cancers and remains a clinical challenge.

View Article and Find Full Text PDF

Artesunate (ARS) induced significant reactive oxygen species (ROS) generation in HepG2, HeLa, and A549 lines. However, ARS induced ROS-dependent apoptosis in HeLa and A549 cell lines but ROS-independent apoptosis in HepG2 cells. A total of 200 μM hydrogen peroxide (HO) significantly induced cytotoxicity in HeLa cells, while HO up to 300 μM did not induce cytotoxicity in HepG2 cells, further demonstrating the strong resistance of HepG2 cells to ROS.

View Article and Find Full Text PDF

This study aims to explore which radicals dominate sodium nitroprusside (SNP)-induced cytotoxicity in human hepatocellular carcinoma (HCC) cells (HepG2 and Hep3B). Exposure of SNP to cell medium produced abundant nitric oxide (NO), superoxide anion (O2•-), hydrogen peroxide (H2O2) and iron ions. SNP potently induced caspases activation, mitochondrial membrane permeabilization and apoptosis in HCC cells.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS).

View Article and Find Full Text PDF

Sodium nitroprusside (SNP) has been widely used as an exogenous nitric oxide (NO) donor to explore the molecular mechanism of NO-mediated chondrocyte apoptosis during the latest two decades. We have recently found that NO-independent ROS play a key role in SNP-induced apoptosis in rabbit chondrocytes. This study aims to investigate what kind of ROS and how the reliable ROS mediators mediate the SNP-induced apoptosis.

View Article and Find Full Text PDF

This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h.

View Article and Find Full Text PDF

Bim, a proapoptotic BH3-only member of Bcl-2 family, has been considered to play an important role in initiating mitochondrial apoptotic pathway. Our previous studies have shown the ability of dihydroarteminsin (DHA) to induce apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. In this study, we investigated the function of Bim during DHA-induced apoptosis in ASTC-a-1 and another human lung adenocarcinoma (A549) cell lines.

View Article and Find Full Text PDF

This report is designed to explore the exact molecular mechanism by which artesunate (ART), a semisynthetic derivative of the herbal antimalaria drug artemisinin, induces apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. ART treatment induced ROS-mediated apoptosis in a concentration- and time-dependent fashion accompanying the loss of mitochondrial potential and subsequent release of Smac and AIF indicative of intrinsic apoptosis pathway. Blockage of casapse-8 and -9 did not show any inhibitory effect on the ART-induced apoptosis, but which was remarkably prevented by silencing AIF.

View Article and Find Full Text PDF

Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner.

View Article and Find Full Text PDF

The mitotic kinase Aurora-A (Aur-A) is required to form the bipolar spindle and ensure accurate chromosome segregation before cell division. Aur-A dysregulation represents an oncogenic event that promotes tumor formation. Here, we report that Aur-A promotes breast cancer metastasis.

View Article and Find Full Text PDF

Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined.

View Article and Find Full Text PDF

Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors such as ovarian, breast, non-small-cell lung tumors, and some head and neck carcinomas. Different concentrations of taxol trigger distinct effects on cell death forms. In present study, cell counting kit (CCK-8) assay, confocal fluorescence microscopy imaging, flow cytometry (FCM) and western blotting (WB) analysis were used to analyze the characteristics of cell death induced by low (35 nM) and high (70 microM) concentration of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells.

View Article and Find Full Text PDF

The C-Jun N-terminal Kinase (JNK) inhibitor SP600125 is widely used to inhibit the JNK-mediated Bax activation and cell apoptosis. However, this report demonstrates that SP600125 synergistically enhances the dihydroartemisinin (DHA)-induced human lung adenocarcinoma cell apoptosis by accelerating Bax translocation and subsequent intrinsic apoptotic pathway involving mitochondrial membrane depolarization, cytochrome c release, caspase-9 and caspase-3 activation. The dynamical analysis of GFP-Bax mobility inside single living cells using fluorescence recovery after photobleaching revealed that SP600125 aggravated the DHA-induced decrease of Bax mobility and Bax translocation.

View Article and Find Full Text PDF

In order to non-invasively investigate nucleoplasmic viscosity in real time with good temporal resolution, the present study firstly introduced a new method based on fluorescence correlation spectroscopy (FCS). FCS is a kind of single-molecule technique with high temporal and spatial resolution to analyze the dynamics of fluorescent molecules in nanomolar concentration. Through a time correlation analysis of spontaneous intensity fluctuations, this technique in conjunction with EGFP as a probe is capable of determining nucleoplasmic viscosity in terms of Stokes-Einstein equation as well as its corresponding analysis of the diffusion coefficient for EGFP in the nucleus.

View Article and Find Full Text PDF

Background: Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, is recommended as the first-line anti-malarial drug with low toxicity. DHA has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways, although the molecular mechanisms are not well understood.

Methods: In this study, cell counting kit (CCK-8) assay was employed to evaluate the survival of DHA-treated ASTC-a-1 cells.

View Article and Find Full Text PDF

In the present report, the authors for the first time described the characteristics of taxol-induced paraptosis-like for the human lung adenocarcinoma cells (ASTC-a-1). CCK-8 was used to assay the inhibition of taxol on the cells viability. Cell viability was inhibited obviously 24 h after taxol treatment.

View Article and Find Full Text PDF

The CCK-8 was used to measure the inhibition effect of Xiao-Ai-Ping (XAP), a traditional medicine, on the human lung adenocarcinoma (ASTC-a-1) cells viability. The ASTC-a-1 cells expressing stably with SCAT3, a fluorescence resonance energy transfer (FRET) plasmid based on the green fluorescent protein mutants (GFPs), was verified using confocal fluorescence scanning microscopy imaging, fluorescence emission spectra and FRET acceptor photobleaching techniques. The caspase-3 activation can be monitored by the fluorescence emission spectra of SCAT3 inside living cells.

View Article and Find Full Text PDF

High concentration of taxol was found to induce programmed cell death (PCD) and cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. To elucidate the relationship between the PCD and cytoplasm vacuolization, confocal fluorescence microscopy was performed on the cytoplasm vacuolization, endoplasmic reticulum (ER) and mitochondria swelling after taxol treatment in living cells. erRFP plasmid was used to probe the ER distribution, and SCAT3 plasmid was used to monitor the caspase-3 activation in living cells.

View Article and Find Full Text PDF

Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol.

View Article and Find Full Text PDF

Molecular biological methods were applied to analyze the genetic diversity of microbe community in biofilter. V3 variable fragments of genes coding for 16S rRNA were amplified by Polymerase Chain Reaction. Then PCR-DGGE combined technique were used to analyze the microbial population composition and phylogeny of deodorant biofilter.

View Article and Find Full Text PDF

Background And Objectives: Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound etc. Yet, the mechanism of LPLI remains unclear. In order to determine the effects of high fluence LPLI on cell growth and caspase-3 activity, we have measured the dynamics of caspase-3 activity during cell apoptosis induced by high fluence LPLI treatment.

View Article and Find Full Text PDF

Combination of green fluorescent protein (GFP) and two-photon excitation fluorescence microscopy (TPE) has been used increasingly to study dynamic biochemical events within living cells, sometimes even in vivo. However, the high photon flux required in TPE may lead to higher-order photobleaching within the focal volume, which would introduce misinterpretation about the fine biochemical events. Here we first studied the high-order photobleaching rate of GFP inside live cells by measuring the dependence of the photobleaching rate on the excitation power.

View Article and Find Full Text PDF