Previous studies suggest membrane binding is a key determinant of amyloid β (Aβ) neurotoxicity. However, it is unclear whether this interaction is receptor driven. To address this issue, a D-handed enantiomer of Aβ42 (D-Aβ42) was synthesized and its biophysical and neurotoxic properties were compared to the wild-type Aβ42 (L-Aβ42).
View Article and Find Full Text PDFHeterodimeric integrin adhesion receptors regulate cell migration, survival and differentiation in metazoa by communicating signals bi-directionally across the plasma membrane. Protein engineering and mutagenesis studies have suggested that the dissociation of a complex formed by the single-pass transmembrane (TM) segments of the alpha and beta subunits is central to these signalling events. Here, we report the structure of the integrin alphaIIbbeta3 TM complex, structure-based site-directed mutagenesis and lipid embedding estimates to reveal the structural event that underlies the transition from associated to dissociated states, that is, TM signalling.
View Article and Find Full Text PDFClustering and occupancy of platelet integrin alpha(IIb)beta(3) (GPIIb-IIIa) generate biologically important signals: conversely, intracellular signals increase the integrins' affinity, leading to integrin activation; both forms of integrin signaling play important roles in hemostasis and thrombosis. Indirect evidence implicates interactions between integrin alpha and beta transmembrane domains (TMDs) and cytoplasmic domains in integrin signaling; however, efforts to directly identify these associations have met with varying and controversial results. In this study, we develop mini-integrin affinity capture and use it in combination with nuclear magnetic resonance spectroscopy to show preferential heterodimeric association of integrin alpha(IIb)beta(3) TMD tails via specific TMD interactions in mammalian cell membranes in lipid bicelles.
View Article and Find Full Text PDFIntegrin cell-adhesion receptors transduce signals bidirectionally across the plasma membrane via the single-pass transmembrane segments of each alpha and beta subunit. While the beta3 transmembrane segment consists of a linear 29-residue alpha-helix, the structure of the alphaIIb transmembrane segment reveals a linear 24-residue alpha-helix (Ile-966 -Lys-989) followed by a backbone reversal that packs Phe-992-Phe-993 against the transmembrane helix. The length of the alphaIIb transmembrane helix implies the absence of a significant transmembrane helix tilt in contrast to its partnering beta3 subunit.
View Article and Find Full Text PDFIntegrin adhesion receptors transduce bidirectional signals across the plasma membrane, with the integrin transmembrane domains acting as conduits in this process. Here, we report the first high-resolution structure of an integrin transmembrane domain. To assess the influence of the membrane model system, structure determinations of the beta3 integrin transmembrane segment and flanking sequences were carried out in both phospholipid bicelles and detergent micelles.
View Article and Find Full Text PDFThe beta-sheet plaques that are the most obvious pathological feature of Alzheimer's disease are composed of amyloid-beta peptides and are highly enriched in the metal ions Zn, Fe and Cu. The interaction of the full-length amyloid peptide, A beta(1-42), with phospholipid lipid bilayers was studied in the presence of the metal-chelating drug, Clioquinol (CQ). The effect of cholesterol and metal ions was also determined using solid-state 31P and 2H NMR.
View Article and Find Full Text PDFAbeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures.
View Article and Find Full Text PDFAmyloid-beta peptide (Abeta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic Abeta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/peptide ratios of >0.6:1 by EPR spectroscopy.
View Article and Find Full Text PDFBeta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides.
View Article and Find Full Text PDF