Publications by authors named "Tong-Dian Zhang"

Recent studies revealed that some common endocrine-disrupting chemicals (EDCs) including phthalates and phytoestrogens may exhibit low-dose effects properties. However, how low dose of these EDCs and their mixture would affect fetal rat testis development still needs further investigation. Moreover, testis organ culture system also needs further modification to provide an effective tool for EDCs study.

View Article and Find Full Text PDF

In the past two decades, testicular tissue grafting and xenografting have been well established, with the production of fertilization-competent sperm in some studies. However, few studies have been carried out to observe the development of grafted prepubertal testicular tissue of rats and compare the biological differences between in situ testis and grafted testis. In this study, we established the prepubertal testicular tissue xenografting model using a 22-day-old rat and evaluated certain parameters, including testicular histology, testosterone production, and ultrastructure of the grafted testes.

View Article and Find Full Text PDF

Mono-(2-ethylhexyl) phthalate (MEHP) and genistein have been classified as endocrine-disrupting chemicals (EDCs) which interfere with the differentiation and development of the male reproductive system. However, how these two EDCs would affect fetal rat testis development at a low dose was rarely studied. In this study, we established the organ culture system and applied it to evaluate testicular effects following multiple EDC exposure at a low dose.

View Article and Find Full Text PDF

Objective: To establish a method for in vitro culture of the fetal rat testis tissue.

Methods: Nine sexually mature specific-pathogen-free rats, 3 males and 6 females, weighing 200-250 g, were used for this study. The estrus of the female rats was determined according to the results of the vaginal smear test.

View Article and Find Full Text PDF

The two-dimensional model of cell culture is an important method in the study of testicular development and spermatogenesis but can not effectively mimic and regulate the testicular microenvironment and the whole process of spermatogenesis due to the lack of relevant cell factors and the disruption of a three-dimensional spatial structure. In the past 20 years, the development and optimization of the in vitro model such as testis organotypic culture and in vivo model such as testis transplantation achieved a transformation from two- to three-dimension. The maintenance and optimization of the testicular niche structure could mimic the testicular microenvironment and cell types including Leydig, Sertoli and germ cells, which showed similar biological behaviors to those in vivo.

View Article and Find Full Text PDF