Publications by authors named "Tong X Li"

Depression and transient ischaemic attack represent the common psychological and neurological diseases, respectively, and are tightly associated. However, studies of depression-affected ischaemic attack have been limited to epidemiological evidences, and the neural circuits underlying depression-modulated ischaemic injury remain unknown. Here, we find that chronic social defeat stress (CSDS) and chronic footshock stress (CFS) exacerbate CA1 neuron loss and spatial learning/memory impairment after a short transient global ischaemia (TGI) attack in mice.

View Article and Find Full Text PDF

This paper describes an approach for preparing unimolecular double-stranded DNA (uni-dsDNA) microarray chip. In this method, the various target oligonucleotides containing a reverse complementary sequence at 5' end were firstly annealed to a same universal oligonucleotide with amino group at 5' end and immobilized on aldehyde-derivatized glass slide. An on-chip DNA polymerization reaction was then performed to elongate the universal oligonucleotides.

View Article and Find Full Text PDF

We report a method called SSH array which combines the suppression subtraction hybridization (SSH) and DNA array techniques to find species-specific DNA probes from genomic DNA (gDNA) for species identification. The method first obtains the differential gDNA fragments between two species by SSH and then hybridizes the differential gDNA fragments with arrays made of multiple whole genomes from several species to screen the unique gDNA fragments for one species. The screened unique gDNA fragments can be used as species-specific probes to differentiate the species they represent from all other species.

View Article and Find Full Text PDF

This study investigated the binding affinities of NF-kappaB p50 homodimer to the wild-type and single-nucleotide mutant Ig-kappaB sites by the unimolecular dsDNA microarray which was fabricated with a novel scheme. The importance of each nucleotide of Ig-kappaB site for the sequence-specific p50p50/Ig-kappaB interaction was thus evaluated. The results demonstrate that the nucleotides at different positions contribute differently to the p50p50/Ig-kappaB binding interaction.

View Article and Find Full Text PDF