Publications by authors named "Tong Ruan"

The construction of medical knowledge graphs (MKGs) is steadily progressing from manual to automatic methods, which inevitably introduce noise, which could impair the performance of downstream healthcare applications. Existing error detection approaches depend on the topological structure and external labels of entities in MKGs to improve their quality. Nevertheless, due to the cost of manual annotation and imperfect automatic algorithms, precise entity labels in MKGs cannot be readily obtained.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is one of the most common malignant tumors in the world, posing a serious threat to human health. Currently, gastric cancer treatment strategies emphasize a multidisciplinary team (MDT) consultation approach. However, there are numerous treatment guidelines and insights from clinical trials.

View Article and Find Full Text PDF

Motivation: In the medical field, multiple terminology bases coexist across different institutions and contexts, often resulting in the presence of redundant terms. The identification of overlapping terms among these bases holds significant potential for harmonizing multiple standards and establishing unified framework, which enhances user access to comprehensive and well-structured medical information. However, the majority of terminology bases exhibit differences not only in semantic aspects but also in the hierarchy of their classification systems.

View Article and Find Full Text PDF

Motivation: Biomedical relation extraction is a vital task for electronic health record mining and biomedical knowledge base construction. Previous work often adopts pipeline methods or joint methods to extract subject, relation, and object while ignoring the interaction of subject-object entity pair and relation within the triplet structure. However, we observe that entity pair and relation within a triplet are highly related, which motivates us to build a framework to extract triplets that can capture the rich interactions among the elements in a triplet.

View Article and Find Full Text PDF

In recent years, relation extraction on unstructured texts has become an important task in medical research. However, relation extraction requires a large amount of labeled corpus, manually annotating sequences is time consuming and expensive. Therefore, efficient and economical methods for annotating sequences are required to ensure the performance of relational extraction.

View Article and Find Full Text PDF

Medical image segmentation is an essential task in clinical diagnosis and case analysis. Most of the existing methods are based on U-shaped convolutional neural networks (CNNs), and one of disadvantages is that the long-term dependencies and global contextual connections cannot be effectively established, which results in inaccuracy segmentation. For fully using low-level features to enhance global features and reduce the semantic gap between encoding and decoding stages, we propose a novel Swin Transformer boosted U-Net (ST-Unet) for medical image processing in this paper, in which Swin Transformer and CNNs are used as encoder and decoder respectively.

View Article and Find Full Text PDF

Motivation: Medical terminology normalization aims to map the clinical mention to terminologies coming from a knowledge base, which plays an important role in analyzing electronic health record and many downstream tasks. In this article, we focus on Chinese procedure terminology normalization. The expressions of terminology are various and one medical mention may be linked to multiple terminologies.

View Article and Find Full Text PDF

Background: Laboratory indicator test results in electronic health records have been applied to many clinical big data analysis. However, it is quite common that the same laboratory examination item (i.e.

View Article and Find Full Text PDF

Background: Electronic health records (EHRs) provide possibilities to improve patient care and facilitate clinical research. However, there are many challenges faced by the applications of EHRs, such as temporality, high dimensionality, sparseness, noise, random error and systematic bias. In particular, temporal information is difficult to effectively use by traditional machine learning methods while the sequential information of EHRs is very useful.

View Article and Find Full Text PDF

Regional healthcare platforms collect clinical data from hospitals in specific areas for the purpose of healthcare management. It is a common requirement to reuse the data for clinical research. However, we have to face challenges like the inconsistence of terminology in electronic health records (EHR) and the complexities in data quality and data formats in regional healthcare platform.

View Article and Find Full Text PDF

Clinical named entity recognition (CNER) is a fundamental and crucial task for clinical and translation research. In recent years, deep learning methods have achieved significant success in CNER tasks. However, these methods depend greatly on recurrent neural networks (RNNs), which maintain a vector of hidden activations that are propagated through time, thus causing too much time to train models.

View Article and Find Full Text PDF

Background: While doctors should analyze a large amount of electronic medical record (EMR) data to conduct clinical research, the analyzing process requires information technology (IT) skills, which is difficult for most doctors in China.

Methods: In this paper, we build a novel tool QAnalysis, where doctors enter their analytic requirements in their natural language and then the tool returns charts and tables to the doctors. For a given question from a user, we first segment the sentence, and then we use grammar parser to analyze the structure of the sentence.

View Article and Find Full Text PDF

Clinical named entity recognition aims to identify and classify clinical terms such as diseases, symptoms, treatments, exams, and body parts in electronic health records, which is a fundamental and crucial task for clinical and translational research. In recent years, deep neural networks have achieved significant success in named entity recognition and many other natural language processing tasks. Most of these algorithms are trained end to end, and can automatically learn features from large scale labeled datasets.

View Article and Find Full Text PDF

Objective: This paper constructs a mortality prediction system based on a real-world dataset. This mortality prediction system aims to predict mortality in heart failure (HF) patients. Effective mortality prediction can improve resources allocation and clinical outcomes, avoiding inappropriate overtreatment of low-mortality patients and discharging of high-mortality patients.

View Article and Find Full Text PDF

Background: While a large number of well-known knowledge bases (KBs) in life science have been published as Linked Open Data, there are few KBs in Chinese. However, KBs in Chinese are necessary when we want to automatically process and analyze electronic medical records (EMRs) in Chinese. Of all, the symptom KB in Chinese is the most seriously in need, since symptoms are the starting point of clinical diagnosis.

View Article and Find Full Text PDF

Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form.

View Article and Find Full Text PDF