One challenge confronting the CuO catalysts in the electrocatalysis of carbon dioxide reduction reaction (CORR) is the reduction of active Cu(I) species, resulting in low selectivity and quick deactivation. In this study, we for the first time introduce a bottom-up growth of convex sphere with adjustable Cu(0)/Cu(I) interfaces (Cu@CuO convex spheres). Interestingly, the interfaces are dynamically modulated by varying hydrothermal time, thus regulating the conversion of C and C products.
View Article and Find Full Text PDFNat Struct Mol Biol
May 2024
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex.
View Article and Find Full Text PDFRemoval of the intron from precursor-tRNA (pre-tRNA) is essential in all three kingdoms of life. In humans, this process is mediated by the tRNA splicing endonuclease (TSEN) comprising four subunits: TSEN2, TSEN15, TSEN34, and TSEN54. Here, we report the cryo-EM structures of human TSEN bound to full-length pre-tRNA in the pre-catalytic and post-catalytic states at average resolutions of 2.
View Article and Find Full Text PDFThree RNA helicases - DDX42, DDX46 and DHX15 - are found to be associated with human U2 snRNP, but their roles and mechanisms in U2 snRNP and spliceosome assembly are insufficiently understood. Here we report the cryo-electron microscopy (cryo-EM) structures of the DDX42-SF3b complex and a putative assembly precursor of 17S U2 snRNP that contains DDX42 (DDX42-U2 complex). DDX42 is anchored on SF3B1 through N-terminal sequences, with its N-plug occupying the RNA path of SF3B1.
View Article and Find Full Text PDFCoulombic interactions can be used to assemble charged nanoparticles into higher-order structures, but the process requires oppositely charged partners that are similarly sized. The ability to mediate the assembly of such charged nanoparticles using structurally simple small molecules would greatly facilitate the fabrication of nanostructured materials and harnessing their applications in catalysis, sensing and photonics. Here we show that small molecules with as few as three electric charges can effectively induce attractive interactions between oppositely charged nanoparticles in water.
View Article and Find Full Text PDFSelf-assembly of nanoparticles can be mediated by polymers, but has so far led almost exclusively to nanoparticle aggregates that are amorphous. Here, we employed Coulombic interactions to generate a range of composite materials from mixtures of charged nanoparticles and oppositely charged polymers. The assembly behavior of these nanoparticle/polymer composites depends on their order of addition: polymers added to nanoparticles give rise to stable aggregates, but nanoparticles added to polymers disassemble the initially formed aggregates.
View Article and Find Full Text PDFGhost imaging (GI) is an unconventional optical imaging method making use of the correlation measurement between a test beam and a reference beam. GI using deep learning (GIDL) has earned increasing attention, as it can reconstruct images of high quality more effectively than traditional GI methods. It has been demonstrated that GIDL can be trained completely with simulation data, which makes it even more practical.
View Article and Find Full Text PDFGhost imaging using deep learning (GIDL) is a kind of computational quantum imaging method devised to improve the imaging efficiency. However, among most proposals of GIDL so far, the same set of random patterns were used in both the training and test set, leading to a decrease of the generalization ability of networks. Thus, the GIDL technique can only reconstruct the profile of the image of the object, losing most of the details.
View Article and Find Full Text PDFThe ability to reversibly assemble nanoparticles using light is both fundamentally interesting and important for applications ranging from reversible data storage to controlled drug delivery. Here, the diverse approaches that have so far been developed to control the self-assembly of nanoparticles using light are reviewed and compared. These approaches include functionalizing nanoparticles with monolayers of photoresponsive molecules, placing them in photoresponsive media capable of reversibly protonating the particles under light, and decorating plasmonic nanoparticles with thermoresponsive polymers, to name just a few.
View Article and Find Full Text PDFThe reversible photoisomerization of azobenzene has been utilized to construct a plethora of systems in which optical, electronic, catalytic, and other properties can be controlled by light. However, owing to azobenzene's hydrophobic nature, most of these examples have been realized only in organic solvents, and systems operating in water are relatively scarce. Here, we show that by coadsorbing the inherently hydrophobic azobenzenes with water-solubilizing ligands on the same nanoparticulate platforms, it is possible to render them essentially water-soluble.
View Article and Find Full Text PDFA facile synthetic strategy for nitrogen-deficient graphitic carbon nitride (g-C N ) is established, involving a simple alkali-assisted thermal polymerization of urea, melamine, or thiourea. In situ introduced nitrogen vacancies significantly redshift the absorption edge of g-C N , with the defect concentration depending on the alkali to nitrogen precursor ratio. The g-C N products show superior visible-light photocatalytic performance compared to pristine g-C N .
View Article and Find Full Text PDFT. Zhang and co-workers report the synthesis of nitrogen-doped porous carbon nanosheets with extremely high nitrogen content and high surface areas using graphitic carbon nitride (g-C3 N4 ) as template, nitrogen source, and porogen. As described on page 5080, the nanosheets exhibit outstanding oxygen reduction catalytic activities which are comparable to commercial Pt/C catalysts in alkaline media.
View Article and Find Full Text PDFNitrogen-doped porous carbon nanosheets (N-CNS) are synthesized by hydrothermal carbon coating of g-C3 N4 nanosheets followed by high-temperature treatment in N2 . g-C3 N4 serves as a template, nitrogen source, and porogen in the synthesis. This approach yields N-CNS with a high nitrogen content and comparable oxygen reduction reaction catalytic activities to commercial Pt/C catalysts in alkaline media.
View Article and Find Full Text PDFA novel system was reported to realize the reversible self-assembly and disassembly of Au nanovesicles (NVs) driven by pH stimuli with commercially available organic molecules, 4-mercaptobenzonic acid (4-MBA) and oleylamine (OL). Through adjusting deprotonation and protonation of 4-MBA, Au NVs demonstrated a good reversible self-assembly behavior. As a proof-of-concept, Rhodamine B was loaded into the vesicles to demonstrate the reversible pH-responsive controlled release.
View Article and Find Full Text PDFA well-dispersed Co,N co-doped carbon nanoframework (Co,N-CNF) with hierarchically porous structure is successfully synthesized from zeolitic imidazolate framework (ZIF) precursors via a mesoporous-silica-protected calcination strategy. By preventing the irreversible fusion and aggregation during the high-temperature pyrolysis step with this protection strategy, the Co,N-CNF exhibits comparable oxygen reduction reaction (ORR) catalytic activity to that of commercial Pt catalysts with the same loading.
View Article and Find Full Text PDFDefect-rich ultrathin ZnAl-layered double hydroxide nanosheets are successfully prepared. Under UV-vis irradiation, these nanosheets are superior efficient catalysts for the photoreduction of CO2 to CO with water. The formed oxygen vacancies lead to the formation of coordinatively unsaturated Zn(+) centers within the nanosheets, responsible for the very high photocatalytic activities.
View Article and Find Full Text PDFA copper(i) cysteine complex generated by mixing Cu(ii) ions with cysteine in aqueous solution greatly enhanced the activity of CdSe photocatalysts for H2 production in aqueous solution under visible light excitation. The complex can enhance the H2 evolution rate by as much as 150 times, by acting as an oxidation co-catalyst and increasing charge carrier lifetimes. The copper(i) cysteine complex can also be applied to enhance the H2 production performance of other semiconductor photocatalyst systems, thereby affording a new research direction in the development of co-catalysts for solar hydrogen production.
View Article and Find Full Text PDFNi(3+) doped NiTi layered double hydroxide (NiTi-LDH) monolayer nanosheets with a particle size of ∼ 20 nm and a thickness of ∼ 0.9 nm have been successfully prepared through a facile bottom-up approach. These NiTi-LDH monolayer nanosheets exhibit excellent supercapacitor performance, including a high specific pseudocapacitance (2310 F g(-1) at 1.
View Article and Find Full Text PDFFlower-like CdSe architectures composed of ultrathin nanosheets were prepared via a facile solvothermal method. A relationship was established between the solvothermal temperature and the product structure, and thus the photocatalytic activity. When compared with well-studied CdSe quantum dots, the ultrathin nanosheet assemblies exhibited a better photocatalytic H2 evolution activity under visible light irradiation.
View Article and Find Full Text PDFA versatile addition-crosslinking route is developed to transfer various hydrophobic nanocrystals into water. By assembling amphiphilic ligands and then crosslinking through 'click chemistry', a monolayer of polymer forms on the nanocrystal surface, leading to excellent stability and limited increase in hydrodynamic diameter. These nanocrystals can also be further functionalized easily for various applications such as catalysis, bioimaging, and medical therapy.
View Article and Find Full Text PDFLanthanide-based upconversion nanoparticles (UCNPs) are a new type of luminescent tags that show great application potential in biomedical fields. However, a major challenge when applying UCNPs in biomedical research is the lack of a versatile strategy to make water-dispersible and biocompatible UCNPs with high simplicity in functionalization. To address this problem, in the present work, we employed 6-phosphate-6-deoxy-β-cyclodextrin (βPCD) as the novel ligand to fabricate a versatile upconversion luminescent nanoplatform.
View Article and Find Full Text PDFA novel versatile light-triggered strategy is developed to organize inorganic nanoparticles (NPs) into nanovesicles with single or multiple layers in mixed solvents. This strategy constitutes a new assembly mechanism based on the photo-oxidation of thiol ligands. Compared with currently-used individual semiconductor NPs, the prepared CdSe QD vesicles exhibit an improved catalytic activity and unprecedented catalytic stability towards solar-driven hydrogen production.
View Article and Find Full Text PDFGraphene nanosheet-supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high-temperature stability. The catalysts can be recycled and reused in many gas- and solution-phase reactions, and their high catalytic activity can be fully recovered by high-temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets.
View Article and Find Full Text PDFHierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.
View Article and Find Full Text PDF