The seamless integration of electronics with living matter requires advanced materials with programmable biological and engineering properties. Here electrochemical methods to assemble semi-synthetic hydrogels directly on electronically conductive surfaces are explored. Hydrogels consisting of poly (ethylene glycol) (PEG) and heparin building blocks are polymerized by spatially controlling the click reaction between their thiol and maleimide moieties.
View Article and Find Full Text PDFClin Hemorheol Microcirc
May 2021
Immunocompatibility and non-thrombogenicity are important requirements for biomedical applications such as vascular grafts. Here, gelatin-based hydrogels formed by reaction of porcine gelatin with increasing amounts of lysine diisocyanate ethyl ester were investigated in vitro in this regard. In addition, potential adverse effects of the hydrogels were determined using the "Hen's egg test on chorioallantoic membrane" (HET-CAM) test and a mouse model.
View Article and Find Full Text PDFNeuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability.
View Article and Find Full Text PDFChimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4 target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.
View Article and Find Full Text PDFAicardi-Goutières syndrome (AGS) is a hereditary early onset encephalopathy. AGS patients display variable clinical manifestations including intracranial calcification, cerebral atrophy, white matter abnormalities and characteristic leukocytosis as well as a constitutive upregulation of type I IFN production indicative of a type I interferonopathy. Seven genes (SAMHD1, TREX1, RNASEH2B, RNASEH2C, RNASEH2A, ADAR1, IFIH1) have been associated with the AGS phenotype, up to now.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are a useful tool to investigate pathomechanistic and cellular processes due to their differentiation potential into different somatic cell types in vitro. Here, we have generated iPSCs from an apparently healthy male individual using an integration-free reprogramming method. The resulting iPSCs are pluripotent and display a normal karyotype.
View Article and Find Full Text PDFTissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells.
View Article and Find Full Text PDFThe Renpenning syndrome spectrum is a rare X-linked mental retardation syndrome characterized by intellectual disability, microcephaly, low stature, lean body and hypogonadism. Mutations in the polyglutamine tract binding protein 1 (PQBP1) locus are causative for disease. Here, we describe the generation of an iPSC line from a patient mutated in the polar amino acid-rich domain of PQBP1 resulting in a C-terminal truncated protein (c.
View Article and Find Full Text PDFElectrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach.
View Article and Find Full Text PDFSAMHD1 is a critical restriction factor for HIV-1 in non-cycling cells and its antiviral activity is regulated by T592 phosphorylation. Here, we show that SAMHD1 dephosphorylation at T592 is controlled during the cell cycle, occurring during M/G transition in proliferating cells. Using several complementary proteomics and biochemical approaches, we identify the phosphatase PP2A-B55α responsible for rendering SAMHD1 antivirally active.
View Article and Find Full Text PDFThe EF-hand type calcium-binding protein S100A12 exerts numerous intra- and extracellular functions of (patho)physiological relevance. Therefore, receptors of S100A12 are of high interest for research and clinical applications. Beside the extensively studied receptor for advanced glycation endproducts (RAGE), G-protein coupled receptors and more recently, scavenger receptors are suggested to be putative S100A12 receptors.
View Article and Find Full Text PDFHydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation).
View Article and Find Full Text PDFUnlabelled: In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available.
View Article and Find Full Text PDFThis study aimed at in vivo visualization of cyclooxygenase-2 (COX-2) by optical imaging using a representative compound of a class of autofluorescent 2,3-diaryl-substituted indole-based selective COX-2 inhibitors (2,3-diaryl-indole coxibs). COX-2 was successfully visualized in mice models with phorbol myristate ester (TPA)-induced inflammation or bearing xenografted human melanoma cells by 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1). COX-2 protein expression in both TPA-induced inflammatory sites and human melanoma xenografts was confirmed by immunoblotting.
View Article and Find Full Text PDFHydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration.
View Article and Find Full Text PDFThis study aimed at visualization of cyclooxygenase-2 (COX-2) protein expression in melanoma cells by confocal laser induced cryofluorescence microscopy using 4-(3-(4-methoxyphenyl)-1H-indol-2-yl)benzene-sulfonamide (C1) representative for a novel class of autofluorescent 2,3-diarylsubstituted indole-based selective COX-2 inhibitors. COX-2 expression was measured in human melanoma cell lines A2058 and MelJuso by immunocytochemistry and immunoblotting. Cellular uptake experiments using varying C1 concentrations down to 0.
View Article and Find Full Text PDFAfter fixation in the human genome, human endogenous retroviruses (HERVs) are bona fide cellular genes despite their exogenous origin. To be able to spread within the germ line and the early embryo, the ancient retroviral promoters must have adapted to the requirements for expression in these cell types. We describe that in contrast to the case for current exogenous retroviruses, which replicate in specific somatic cells, the long terminal repeat (LTR) of the human endogenous retrovirus HERV-K acts as a TATA- and initiator element-independent promoter with a variable transcription start site.
View Article and Find Full Text PDFA few years ago, reactivation of human endogenous retrovirus K (HERV-K) proviruses in melanoma was described. The expression of HERV-K proteins induces humoral immune responses. The aim of the present study was to elucidate the prognostic relevance of serological anti-HERV-K reactivity in melanoma patients.
View Article and Find Full Text PDF