Cumulus-oocyte complex (COC) expansion and oocyte maturation are crucial processes for embryo development and fertility across species. Although miR-29b has been detected in porcine ovarian granulosa cells, its specific role in regulating oocyte maturation remains largely unknown. In this study, using the pig as a model, we report that over-expression of miR-29b lead to a decrease of COC expansion area and inhibits oocyte maturation (P<0.
View Article and Find Full Text PDFThe retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging results from animal trials have supported recent progression into the clinic.
View Article and Find Full Text PDFNuclear small RNAs have emerged as an important subset of non-coding RNA species that are capable of regulating gene expression. A type of small RNA, microRNA (miRNA) have been shown to regulate development of the ovarian follicle via canonical targeting and translational repression. Little has been done to study these molecules at a subcellular level.
View Article and Find Full Text PDFDue to their ability to standardize key physiological parameters, stirred suspension bioreactors can potentially scale the production of quality-controlled pluripotent stem cells (PSCs) for cell therapy application. Because of differences in bioreactor expansion efficiency between mouse (m) and human (h) PSCs, we investigated if conversion of hPSCs, from the conventional "primed" pluripotent state towards the "naïve" state prevalent in mPSCs, could be used to enhance hPSC production. Through transcriptomic enrichment of mechano-sensing signaling, the expression of epigenetic regulators, metabolomics, and cell-surface protein marker analyses, we show that the stirred suspension bioreactor environment helps maintain a naïve-like pluripotent state.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is the leading cause of blindness in the industrialized world. AMD is associated with dysfunction and atrophy of the retinal pigment epithelium (RPE), which provides critical support for photoreceptor survival and function. RPE transplantation is a promising avenue towards a potentially curative treatment for early stage AMD patients, with encouraging reports from animal trials supporting recent progression toward clinical treatments.
View Article and Find Full Text PDFWe have developed an accessible software tool (receptoR) to predict potentially active signaling pathways in one or more cell type(s) of interest from publicly available transcriptome data. As proof-of-concept, we applied it to mouse photoreceptors, yielding the previously untested hypothesis that activin signaling pathways are active in these cells. Expression of the type 2 activin receptor () was experimentally confirmed by both RT-qPCR and immunochemistry, and activation of this signaling pathway with recombinant activin A significantly enhanced the survival of magnetically sorted photoreceptors in culture.
View Article and Find Full Text PDFPreimplantation equine embryos synthesize and secrete fibrinogen, which is a peculiar finding as fibrinogen synthesis almost exclusively occurs in the liver. This study investigated the hypothesis that conceptus-derived fibrinogen mediates cell adhesion during fixation. On day 21 of pregnancy, five integrin subunits, including ITGA5, ITGB1, ITGAV, and ITGB1, displayed significantly higher transcript abundance than on day 16 of pregnancy.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are an attractive cell source for regenerative medicine and the development of therapies, as they can proliferate indefinitely under defined conditions and differentiate into any cell type in the body. Large-scale expansion of cells is limited in adherent culture, making it difficult to obtain adequate cell numbers for research. It has been previously shown that stirred suspension bioreactors (SSBs) can be used to culture mouse and human stem cells.
View Article and Find Full Text PDFMammalian cell culture is foundational to biomedical research, and the reproducibility of research findings across the sciences is drawing increasing attention. While many components contribute to reproducibility, the reporting of factors that impact oxygen delivery in the general biomedical literature has the potential for both significant impact, and immediate improvement. The relationship between the oxygen consumption rate of cells and the diffusive delivery of oxygen through the overlying medium layer means parameters such as medium depth and cell type can cause significant differences in oxygenation for cultures nominally maintained under the same conditions.
View Article and Find Full Text PDFAims/hypothesis: Islet transplantation is a treatment option that can help individuals with type 1 diabetes become insulin independent, but inefficient oxygen and nutrient delivery can hamper islet survival and engraftment due to the size of the islets and loss of the native microvasculature. We hypothesised that size-controlled pseudoislets engineered via centrifugal-forced-aggregation (CFA-PI) in a platform we previously developed would compare favourably with native islets, even after taking into account cell loss during the process.
Methods: Human islets were dissociated and reaggregated into uniform, size-controlled CFA-PI in our microwell system.
Front Endocrinol (Lausanne)
January 2018
Hormonal control of the estrous cycle that occurs in therian mammals is essential for the production of a functional egg. Supporting somatic cell types found within the ovary, such as granulosa and theca cells, respond to endocrine signals to support oocyte maturation and ovulation. Following the release of the egg, now available for fertilization, coordinated hormonal signaling between the mother and putative embryo are required for the establishment of pregnancy.
View Article and Find Full Text PDFWhile this idea is relevant across research scales, its importance becomes critical when dealing with the inherently large, complex and expensive process of preparing material for cell-based therapies (CBTs). Effective and economically viable CBTs will depend on the establishment of optimized protocols for the production of the necessary cell types. Our ability to do this will depend in turn on the capacity to efficiently search through a multi-dimensional problem space of possible protocols in a timely and cost-effective manner.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2018
MicroRNAs (miRNAs) have been established as important regulators of gene expression in the mammalian ovary. A previous screen of small RNA in the porcine ovary identified the downregulation of miR-574 during oocyte maturation, although its role during this process was not established. Here, we found that miR-574 directly targets the transcript for hyaluronan synthase 2 protein (HAS2), a key enzyme in the production of extracellular matrix by the surrounding cumulus cells.
View Article and Find Full Text PDFCardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization lead to variable and inefficient cardiomyocyte yield.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2015
We sought to investigate whether miR-378 plays a role in cumulus cells and whether the manipulation of miRNA levels in cumulus cells influences oocyte maturation in vitro. Cumulus-oocyte complexes (COCs) from ovarian follicles had significantly lower levels of precursor and mature miR-378 in cumulus cells surrounding metaphase II (MII) oocytes than cumulus cells surrounding germinal vesicle (GV) oocytes, suggesting a possible role of miR-378 during COC maturation. Overexpression of miR-378 in cumulus cells impaired expansion and decreased expression of genes associated with expansion (HAS2, PTGS2) and oocyte maturation (CX43, ADAMTS1, PGR).
View Article and Find Full Text PDFMol Cell Endocrinol
January 2015
In developing ovarian follicles, the progesterone receptor (PGR) is essential for mediating transcription of key factors that coordinate cellular functions including follicular remodeling. With recent investigations examining the role of microRNA (miRNA) in regulating ovarian function we used a lentiviral approach to over express miR-378 in cultured primary porcine granulosa cells to study the role this miRNA may play in granulosa cell development. We revealed that miR-378-3p decreased protein levels and mRNA levels of PGR via targeting its 3'UTR.
View Article and Find Full Text PDFReduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells.
View Article and Find Full Text PDFIt is well documented that oocytes from small antral follicles are less competent than those derived from large follicles, and we have previously shown that glial cell line-derived neurotrophic factor (GDNF) enhances developmental competence in oocytes from antral follicles. Exactly how GDNF effects this change and if it depends on the stage of oocyte development is currently unknown. The objective of this study was to examine the transcriptomic effects of follicle size and GDNF on the in vitro maturation of porcine oocytes.
View Article and Find Full Text PDFAsian-Australas J Anim Sci
February 2013
Paddy rice is rarely used as a feed because of its high fiber content. In this study, two experiments were conducted to study the effects of supplementing an enzyme complex consisting of xylanase, beta-glucanase and cellulase, to paddy-based diets on the performance and nutrient digestibility in meat-type ducks. In the both experiments, meat-type ducks (Cherry Valley) were randomly assigned to four treatments.
View Article and Find Full Text PDFPrimordial germ cell (PGC) development is an area of research that is hampered by low cell numbers as well as difficulty in isolation. They are, however, required for the production of gametes and as such represent an important area of understanding that has widespread implications for fertility and reproductive technologies. Here we investigated the role of the heparin-binding growth factor midkine (MK) on PGC development, first using our established model of porcine stem cell-derived PGC-like cells and then confirming our findings in PGC.
View Article and Find Full Text PDFQuantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled.
View Article and Find Full Text PDFExtramedullary hematopoiesis (EMH) refers to the development of foci of hematopoiesis outside its normal location in the bone marrow. This occurs normally during fetal development but is abnormal postpartum. The most common sites of EMH are the spleen and liver.
View Article and Find Full Text PDF